1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kogti [31]
3 years ago
7

A pesticide was applied to a population of roaches, and it was determined that the LD50 was 55mgkg. If the average mass of a roa

ch was 0.02kg, which of the following approaches will determine the dose in mg per roach?
Physics
1 answer:
zhannawk [14.2K]3 years ago
0 0

Answer:

55mg/kg * 0.02kg which gives 1.1 mg pesticides

Explanation:

(Options are missing)

If the average mass or weight of a roach is 0.02kg

And 55mg is needed per 1 kg roaches

The amount or size of pesticide required for 0.02kg roach is 55mg/kg * 0.02kg

Size = 55mg/kg * 0.02 kg

Size = 1.1mgkg/kg

Size = 1.1 mg

So, the size of pesticide required is 1.1mg

You might be interested in
In music, the note G above middle C has a frequency of about 392 hertz. If the speed of sound in the air is 340 m/s, what is the
morpeh [17]

Answer:

0.87 meters

Explanation:

7 0
3 years ago
calculate the period of a wave whose frequency is 5 Hertz and whose wavelength is one centimeter give your answer in a decimal f
olga2289 [7]
The period of the wave is the reciprocal of its frequency.

       1 / (5 per second)  =  0.2 second .

The wavelength is irrelevant to the period.  But since you
gave it to us, we can also calculate the speed of the wave.

Wave speed = (frequency) x (wavelength)

                   = (5 per second) x (1cm)  =  5 cm per second
4 0
4 years ago
How will the motion of the arrow change after it leaves the bow?
Pavel [41]

The string moves to the right, as it restores its original position with the median plane of the bow. As a result, the string "pulls" on the arrow with a force F2. 2. The tip of the arrow T moves slightly to the left.

pls thank me and brainliest me

4 0
3 years ago
A singly charged positive ion has a mass of 3.46 × 10−26 kg. After being accelerated through a potential difference of 215 V the
jasenka [17]

Answer:

1.8 cm

Explanation:

m = mass of the singly charged positive ion = 3.46 x 10⁻²⁶ kg

q = charge on the singly charged positive ion = 1.6 x 10⁻¹⁹ C

\Delta V =Potential difference through which the ion is accelerated = 215 V

v = Speed of the ion

Using conservation of energy

Kinetic energy gained by ion = Electric potential energy lost

(0.5) m v^{2} = q \Delta V\\(0.5) (3.46\times10^{-26}) v^{2} = (1.6\times10^{-19}) (215)\\(1.73\times10^{-26}) v^{2} = 344\times10^{-19}\\v = 4.5\times10^{4} ms^{-1}

r = Radius of the path followed by ion

B = Magnitude of magnetic field = 0.522 T

the magnetic force on the ion provides the necessary centripetal force, hence

qvB = \frac{mv^{2} }{r} \\qB = \frac{mv}{r}\\r =\frac{mv}{qB}\\r =\frac{(3.46\times10^{-26})(4.5\times10^{4})}{(1.6\times10^{-19})(0.522)}\\r = 0.018 m \\r = 1.8 cm

5 0
3 years ago
(I) In a ballistic pendulum experiment, projectile 1 results in a maximum height h of the pendulum equal to 2.6 cm. A second pro
Kipish [7]

Answer:

The second projectile was 1.41 times faster than the first.

Explanation:

In the ballistic pendulum experiment, the speed (v) of the projectile is given by:  

v = \frac{m + M}{m} \cdot \sqrt{2gh}

<em>where m: is the mass of the projectile, M: is the mass of the pendulum, g: is the gravitational constant and h: is the maximum height of the pendulum.   </em>

To know how many times faster was the second projectile than the first, we need to take the ratio for the velocities for the projectiles 2 and 1:    

\frac{v_{2}}{v_{1}} = \frac{\frac{m_{2} + M}{m_{2}} \cdot \sqrt{2gh_{2}}}{\frac{m_{1} + M}{m_{1}} \cdot \sqrt{2gh_{1}}}           (1)

<em>where m₁ and m₂ are the masses of the projectiles 1 and 2, respectively, and h₁ and h₂ are the maximum height reached by the pendulum by the projectiles 1 and 2, respectively.  </em>

Since the projectile 1 has the same mass that the projectile 2, we can simplify equation (1):

\frac{v_{2}}{v_{1}} = \frac{\sqrt{h_{2}}}{\sqrt{h_{1}}}  

\frac{v_{2}}{v_{1}} = \frac{\sqrt{5.2 cm}}{\sqrt{2.6 cm}}

\frac{v_{2}}{v_{1}} = 1.41  

Therefore, the second projectile was 1.41 times faster than the first.  

I hope it helps you!

8 0
3 years ago
Other questions:
  • A mobile phone is pulled northward by a force of 10 n and at the same time pulled southward by another force of 15 n. the result
    15·1 answer
  • (a) It is difficult to extinguish a fire on a crude oil tanker, because each liter of crude oil releases 2.80×107J of energy whe
    10·2 answers
  • Sarah and her friends the swim team are playing on the high dive. One of Sarah's friends throws her back pack, containing her sw
    11·1 answer
  • A cargo elevator on Earth (where g = 10 m/s2) lifts 3000 kg upwards by 20 m. 720 kJ of electrical energy is used up in the proce
    11·1 answer
  • Which statement is an example of the law of conservation of energy
    7·1 answer
  • How much heat would be absorbed by 75.20 g of iron when heated from 22 C to 28 C
    15·2 answers
  • How do you open a door if its not locked?
    6·1 answer
  • Why are bridges built with joints in them?
    8·2 answers
  • Explain the meaning of the error​
    8·1 answer
  • Is the normal force equivalent to the weight of an object?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!