The answer is B
As seen on the graph, the bus maintains a 9m/s speed for a majority of the trip to school.
Answer
given,
mass of satellite = 545 Kg
R = 6.4 x 10⁶ m
H = 2 x 6.4 x 10⁶ m
Mass of earth = 5.972 x 10²⁴ Kg
height above earth is equal to earth's mean radius
a) satellite's orbital velocity
centripetal force acting on satellite = 
gravitational force = 
equating both the above equation



v = 5578.5 m/s
b) 


T = 14416.92 s

T = 4 hr
c) gravitational force acting


F = 5202 N
Answer:
filament bulb, filament lamp
Explanation:
Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
Answer:
the current value is 
Explanation:
The computation of the value of the current is given below:

Hence, the current value is 