Answer:
41°
Explanation:
Kinetic energy at bottom = potential energy at top
½ mv² = mgh
½ v² = gh
h = v²/(2g)
h = (2.4 m/s)² / (2 × 9.8 m/s²)
h = 0.294 m
The pendulum rises to a height of above the bottom. To determine the angle, we need to use trigonometry (see attached diagram).
L − h = L cos θ
cos θ = (L − h) / L
cos θ = (1.2 − 0.294) / 1.2
θ = 41.0°
Rounded to two significant figures, the pendulum makes a maximum angle of 41° with the vertical.
Answer:
+7.0 m/s
Explanation:
Let's take rightward as positive direction.
So in this problem we have:
a = -2.5 m/s^2 acceleration due to the wind (negative because it is leftward)
t = 4 s time interval
v = -3.0 m/s is the final velocity (negative because it is leftward)
We can use the following equation:
v = u + at
Where u is the initial velocity
We want to find u, so if we rearrange the equation we find:

and the positive sign means the initial direction was rightward.
Average velocity =
(displacement) / (time for the displacement)
and
(direction of the displacement) .
Displacement =
(distance from the start-point to the end-point)
and
(direction from the start-point to the end-point) .
When Ben is 200 meters from the corner store,
he is (500 - 200) = 300 meters from his house.
His displacement is
300 meters in the direction
from his house to the neighbor .
His average velocity is
(300/910) = 0.33 meters per second, in the
direction from his house to the neighbor .
Answer:
alpha=53.56rad/s
a=5784rad/s^2
Explanation:
First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

Now, we can calculate the angular acceleration (w0=0rad/s)


with this value we can compute the angular velocity

and the tangential velocity of point B, and then the acceleration of point B:

hope this helps!!