<span>The mechanical energy is conserved.
I hope this helps, good luck! :)</span>
Answer:
Explanation:
potential energy of compressed spring
= 1/2 k d²
= 1/2 x 730 d²
= 365 d²
This energy will be given to block of mass of 1.2 kg in the form of kinetic energy .
Kinetic energy after crossing the rough patch
= 1/2 x 1.2 x 2.3²
= 3.174 J
Loss of energy
= 365 d² - 3.174
This loss is due to negative work done by frictional force
work done by friction = friction force x width of patch
= μmg d , μ = coefficient of friction , m is mass of block , d is width of patch
= .44 x 1.2 x 9.8 x .05
= .2587 J
365 d² - 3.174 = .2587
365 d² = 3.4327
d² = 3.4327 / 365
= .0094
d = .097 m
= 9.7 cm
If friction increases , loss of energy increases . so to achieve same kinetic energy , d will have to be increased so that initial energy increases so compensate increased loss .
This question apparently wants you to get comfortable
with E = m c² . But I must say, this question is a lame
way to do it.
c = 3 x 10⁸ m/s
E = m c²
1.03 x 10⁻¹³ joule = (m) (3 x 10⁸ m/s)²
Divide each side by (3 x 10⁸ m/s)²:
Mass = (1.03 x 10⁻¹³ joule) / (9 x 10¹⁶ m²/s²)
= (1.03 / 9) x (10⁻¹³ ⁻ ¹⁶) (kg)
= 1.144 x 10⁻³⁰ kg . (choice-1)
This is roughly the mass of (1 and 1/4) electrons, so it seems
that it could never happen in nature. The question is just an
exercise in arithmetic, and not a particularly interesting one.
______________________________________
Something like this could have been much more impressive:
The Braidwood Nuclear Power Generating Station in northeastern
Ilinois USA serves Chicago and northern Illinois with electricity.
<span>The station has two pressurized water reactors, which can generate
a net total of 2,242 megawatts at full capacity, making it the largest
nuclear plant in the state.
If the Braidwood plant were able to completely convert mass
to energy, how much mass would it need to convert in order
to provide the total electrical energy that it generates in a year,
operating at full capacity ?
Energy = (2,242 x 10⁶ joule/sec) x (86,400 sec/day) x (365 da/yr)
= (2,242 x 10⁶ x 86,400 x 365) joules
= 7.0704 x 10¹⁶ joules .
How much converted mass is that ?
E = m c²
Divide each side by c² : Mass = E / c² .
c = 3 x 10⁸ m/s
Mass = (7.0704 x 10¹⁶ joules) / (9 x 10¹⁶ m²/s²)
= 0.786 kilogram ! ! !
THAT should impress us ! If I've done the arithmetic correctly,
then roughly (1 pound 11.7 ounces) of mass, if completely
converted to energy, would provide all the energy generated
by the largest nuclear power plant in Illinois, operating at max
capacity for a year !
</span>
Answer:
General intelligence refers to the existence of a broad mental capacity that influences performance on cognitive ability measures.
Specific intelligence refers to a person's aptitude in individual 'modalities' or abilities rather than the more general understanding of intelligence.
Explanation:
A) 750 m
First of all, let's find the wavelength of the microwave. We have
is the frequency
is the speed of light
So the wavelength of the beam is

Now we can use the formula of the single-slit diffraction to find the radius of aperture of the beam:

where
m = 1 since we are interested only in the central fringe
D = 30 km = 30,000 m
a = 2.0 m is the aperture of the antenna (which corresponds to the width of the slit)
Substituting, we find

and so, the diameter is

B) 0.23 W/m^2
First we calculate the area of the surface of the microwave at a distance of 30 km. Since the diameter of the circle is 750 m, the radius is

So the area is

And since the power is

The average intensity is
