It's C. Compounds are broken down.
0.499 mol
Explanation: M(CaC2) = 64.1 g/mol, n= m/M = 32.0 g/ 64.1 g/ mol= 0.499 mol
Amount of Calcium hydroxide Is same
Answer:
The heat of combustion is -25 kJ/g = -2700 kJ/mol.
Explanation:
According to the Law of conservation of energy, the sum of the heat released by the combustion reaction and the heat absorbed by the bomb calorimeter is equal to zero.
Qcomb + Qcal = 0
Qcomb = - Qcal
The heat absorbed by the calorimeter can be calculated with the following expression.
Qcal = C × ΔT
where,
C is the heat capacity of the calorimeter
ΔT is the change in temperature
Then,
Qcomb = - Qcal
Qcomb = - C × ΔT
Qcomb = - 1.56 kJ/°C × 3.2°C = -5.0 kJ
Since this is the heat released when 0.1964 g o quinone burns, the energy of combustion per gram is:

The molar mass of quinone (C₆H₄O₂) is 108 g/mol. Then, the energy of combustion per mole is:

Greetings!
To find the empirical formula you need the relative atomic mass of each element!
Li = 6.9
C = 12
O = 16
You can simply change the percentages into full grams
Li = 18.8g
C = 16.3g
O = 64.9
Then you use this to find the Number of moles = amount in grams / atomic mass
Li = 18.8 ÷ 6.9 = 2.7246
C = 16.3 ÷ 12 = 1.3583
O = 64.9 ÷ 16 = 4.0562
Then divide each number of moles by the smallest value:
Li = 2.7246 ÷ 1.3583 = 2.0
C = 1.3583 ÷ 1.3583 = 1
O = 4.0562 ÷ 1.3583 = 2.9 ≈ 3
So that means that there are 2 Li, 1 C, and 3 O
Empirical formula would be:
Li₂CO₃
Hope this helps!