Answer:
The magnitude of vector B is 43 units and it points in the negative y-direction.
Explanation:
Resultant of vectors = vector sum of all the vectors
Vector A = 29j
Vector B = ?
Resultant of vector A and B = R = -14j
R = A + B
-14j = 29j + B
B = -14j - 29j = - 43j
Hence, the magnitude of vector B is 43 units and it points in the negative y-direction.
I think the answer would be 1 watt but i'm not sure
Answer:
200 mL
Explanation:
Given that,
Initial volume, V₁ = 300 mL
Initial pressure, P₁ = 0.5 kPa
Final pressure, P₂ = 0.75 kPa
We need to find the final volume of the sample if pressure is increased at constant temperature. It is based on Boyle's law. Its mathematical form is given by :

V₂ is the final volume

So, the final volume of the sample is 200 mL.
Answer:
90 meters
Explanation:
Given:
x₀ = 0 m
v₀ = 0 m/s
v = 30 m/s
t = 6 s
Find:
x
x = x₀ + ½ (v + v₀)t
x = 0 + ½ (30 + 0)(6)
x = 90
The car travels 90 meters.
Answer:
a) The centripetal acceleration of the car is 0.68 m/s²
b) The force that maintains circular motion is 940.03 N.
c) The minimum coefficient of static friction between the tires and the road is 0.069.
Explanation:
a) The centripetal acceleration of the car can be found using the following equation:

Where:
v: is the velocity of the car = 51.1 km/h
r: is the radius = 2.95x10² m

Hence, the centripetal acceleration of the car is 0.68 m/s².
b) The force that maintains circular motion is the centripetal force:

Where:
m: is the mass of the car
The mass is given by:

Where P is the weight of the car = 13561 N

Now, the centripetal force is:

Then, the force that maintains circular motion is 940.03 N.
c) Since the centripetal force is equal to the coefficient of static friction, this can be calculated as follows:



Therefore, the minimum coefficient of static friction between the tires and the road is 0.069.
I hope it helps you!