1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesna [10]
3 years ago
11

A 3.5 kg object moving in two dimensions initially has a velocity v1 = (12.0 i^ + 22.0 j^) m/s. A net force F then acts on the o

bject for 2.0 s, after which the object's velocity is v 2 = (16.0 i^ + 29.0 j^) m/s.
Required:
Find the work done by the force in joules.
Physics
1 answer:
lys-0071 [83]3 years ago
6 0

Answer:

The work done by the force is 820.745 joules.

Explanation:

Let suppose that changes in potential energy can be neglected. According to the Work-Energy Theorem, an external conservative force generates a change in the state of motion of the object, that is a change in kinetic energy. This phenomenon is describe by the following mathematical model:

K_{1} + W_{F} = K_{2}

Where:

W_{F} - Work done by the external force, measured in joules.

K_{1}, K_{2} - Translational potential energy, measured in joules.

The work done by the external force is now cleared within:

W_{F} = K_{2} - K_{1}

After using the definition of translational kinetic energy, the previous expression is now expanded as a function of mass and initial and final speeds of the object:

W_{F} = \frac{1}{2}\cdot m \cdot (v_{2}^{2}-v_{1}^{2})

Where:

m - Mass of the object, measured in kilograms.

v_{1}, v_{2} - Initial and final speeds of the object, measured in meters per second.

Now, each speed is the magnitude of respective velocity vector:

Initial velocity

v_{1} = \sqrt{v_{1,x}^{2}+v_{1,y}^{2}}

v_{1} = \sqrt{\left(12\,\frac{m}{s} \right)^{2}+\left(22\,\frac{m}{s} \right)^{2}}

v_{1} \approx 25.060\,\frac{m}{s}

Final velocity

v_{2} = \sqrt{v_{2,x}^{2}+v_{2,y}^{2}}

v_{2} = \sqrt{\left(16\,\frac{m}{s} \right)^{2}+\left(29\,\frac{m}{s} \right)^{2}}

v_{2} \approx 33.121\,\frac{m}{s}

Finally, if m = 3.5\,kg, v_{1} \approx 25.060\,\frac{m}{s} and v_{2} \approx 33.121\,\frac{m}{s}, then the work done by the force is:

W_{F} = \frac{1}{2}\cdot (3.5\,kg)\cdot \left[\left(33.121\,\frac{m}{s} \right)^{2}-\left(25.060\,\frac{m}{s} \right)^{2}\right]

W_{F} = 820.745\,J

The work done by the force is 820.745 joules.

You might be interested in
Please help!!!
Zolol [24]

Answer:

48

Explanation:

you basically divide 1200 into 25

8 0
3 years ago
A student pulls horizontally on a 12 kg box, which then moves horizontally with an acceleration of 0.2 m/s^2. If the student use
polet [3.4K]
The net force of the object is equal to the force applied minus the force of friction. 
                         Fnet = ma = F - Ff
                           12 kg x 0.2 m/s² = 15 N - Ff
The value of Ff is 12.6 N. This force is equal to the product of the normal force which is equal to the weight in horizontal surface and the coefficient of friction.
                             Ff = 12.6 N = k(12 kg)(9.81 m/s²)
The value of k is equal to 0.107. 
7 0
3 years ago
for an ideal monoatomic gas, the internal energy U os due to the kinetic energy and U=3/2RT per mole.show that cv=3/2R per mole
sladkih [1.3K]

Answer:

i. Cv =3R/2

ii. Cp = 5R/2

Explanation:

i. Cv = Molar heat capacity at constant volume

Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT

Differentiating U with respect to T, we have

= d(3/2RT)/dT

= 3R/2

ii. Cp - Molar heat capacity at constant pressure

Cp = Cv + R

substituting Cv into the equation, we have

Cp = 3R/2 + R

taking L.C.M

Cp = (3R + 2R)/2

Cp = 5R/2

3 0
3 years ago
A truck of mass 200kg rests on an inclined plane hindered from rolling down the surface by a storing sprint whose force constant
mixas84 [53]

Answer:

1.92 J

Explanation:

From the question given above, the following data were obtained:

Mass (m) = 200 Kg

Spring constant (K) = 10⁶ N/m

Workdone =?

Next, we shall determine the force exerted on the spring. This can be obtained as follow:

Mass (m) = 200 Kg

Acceleration due to gravity (g) = 9.8 m/s²

Force (F) =?

F = m × g

F = 200 × 9.8

F = 1960 N

Next we shall determine the extent to which the spring stretches. This can be obtained as follow:

Spring constant (K) = 10⁶ N/m

Force (F) = 1960 N

Extention (e) =?

F = Ke

1960 = 10⁶ × e

Divide both side by 10⁶

e = 1960 / 10⁶

e = 0.00196 m

Finally, we shall determine energy (Workdone) on the spring as follow:

Spring constant (K) = 10⁶ N/m

Extention (e) = 0.00196 m

Energy (E) =?

E = ½Ke²

E = ½ × 10⁶ × (0.00196)²

E = 1.92 J

Therefore, the Workdone on the spring is 1.92 J

3 0
3 years ago
Which list of elements contains only metals?
fredd [130]
C. those are all metals.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Your backpack has a mass of 8 kg. You lift it from the ground to a height of
    8·1 answer
  • You are making a 568b utp crossover cable that will be used to cascade two switches on an ethernet network. you have attached an
    13·1 answer
  • A fox runs for 12 seconds at a speed of 9.65 m/s. How much distance does it cover? Exact answer, do NOT round.
    9·1 answer
  • The earth is composed of four layers three of these layers are solid and only one is liquid which layer exits in the liquid stat
    11·2 answers
  • after the Collision the two cars stick together find the initial velocity of the car on the right hand side​
    9·1 answer
  • Choose whether each of the following statements is true or false
    10·1 answer
  • in hydraulic pressure the area of the larger piston is half of the smaller piston.if the force of 4000N is applied on the smalle
    10·1 answer
  • Need some more help please
    15·1 answer
  • How does temperature affect the volume and pressure of a gas?
    10·1 answer
  • Need now
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!