Answer:
The work done by the force is 820.745 joules.
Explanation:
Let suppose that changes in potential energy can be neglected. According to the Work-Energy Theorem, an external conservative force generates a change in the state of motion of the object, that is a change in kinetic energy. This phenomenon is describe by the following mathematical model:
![K_{1} + W_{F} = K_{2}](https://tex.z-dn.net/?f=K_%7B1%7D%20%2B%20W_%7BF%7D%20%3D%20K_%7B2%7D)
Where:
- Work done by the external force, measured in joules.
,
- Translational potential energy, measured in joules.
The work done by the external force is now cleared within:
![W_{F} = K_{2} - K_{1}](https://tex.z-dn.net/?f=W_%7BF%7D%20%3D%20K_%7B2%7D%20-%20K_%7B1%7D)
After using the definition of translational kinetic energy, the previous expression is now expanded as a function of mass and initial and final speeds of the object:
![W_{F} = \frac{1}{2}\cdot m \cdot (v_{2}^{2}-v_{1}^{2})](https://tex.z-dn.net/?f=W_%7BF%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20m%20%5Ccdot%20%28v_%7B2%7D%5E%7B2%7D-v_%7B1%7D%5E%7B2%7D%29)
Where:
- Mass of the object, measured in kilograms.
,
- Initial and final speeds of the object, measured in meters per second.
Now, each speed is the magnitude of respective velocity vector:
Initial velocity
![v_{1} = \sqrt{v_{1,x}^{2}+v_{1,y}^{2}}](https://tex.z-dn.net/?f=v_%7B1%7D%20%3D%20%5Csqrt%7Bv_%7B1%2Cx%7D%5E%7B2%7D%2Bv_%7B1%2Cy%7D%5E%7B2%7D%7D)
![v_{1} = \sqrt{\left(12\,\frac{m}{s} \right)^{2}+\left(22\,\frac{m}{s} \right)^{2}}](https://tex.z-dn.net/?f=v_%7B1%7D%20%3D%20%5Csqrt%7B%5Cleft%2812%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%2B%5Cleft%2822%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%7D)
![v_{1} \approx 25.060\,\frac{m}{s}](https://tex.z-dn.net/?f=v_%7B1%7D%20%5Capprox%2025.060%5C%2C%5Cfrac%7Bm%7D%7Bs%7D)
Final velocity
![v_{2} = \sqrt{v_{2,x}^{2}+v_{2,y}^{2}}](https://tex.z-dn.net/?f=v_%7B2%7D%20%3D%20%5Csqrt%7Bv_%7B2%2Cx%7D%5E%7B2%7D%2Bv_%7B2%2Cy%7D%5E%7B2%7D%7D)
![v_{2} = \sqrt{\left(16\,\frac{m}{s} \right)^{2}+\left(29\,\frac{m}{s} \right)^{2}}](https://tex.z-dn.net/?f=v_%7B2%7D%20%3D%20%5Csqrt%7B%5Cleft%2816%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%2B%5Cleft%2829%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%7D)
![v_{2} \approx 33.121\,\frac{m}{s}](https://tex.z-dn.net/?f=v_%7B2%7D%20%5Capprox%2033.121%5C%2C%5Cfrac%7Bm%7D%7Bs%7D)
Finally, if
,
and
, then the work done by the force is:
![W_{F} = \frac{1}{2}\cdot (3.5\,kg)\cdot \left[\left(33.121\,\frac{m}{s} \right)^{2}-\left(25.060\,\frac{m}{s} \right)^{2}\right]](https://tex.z-dn.net/?f=W_%7BF%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%283.5%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%2833.121%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%2825.060%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D)
![W_{F} = 820.745\,J](https://tex.z-dn.net/?f=W_%7BF%7D%20%3D%20820.745%5C%2CJ)
The work done by the force is 820.745 joules.