Answer:
a) 30.82 m/s
b) 183.33 Hz
Explanation:
a)
V = speed of the sound = 339 m/s
v = speed of the train = ?
f' = observed frequency by the observer = 220 Hz
f = actual frequency of the observer = 200 Hz
using the equation


v = 30.82 m/s
b)
V = speed of the sound = 339 m/s
v = speed of the train = 30.82 m/s
f'' = observed frequency by the observer as train moves away = ?
f = actual frequency of the observer = 200 Hz
using the equation


f'' = 183.33 Hz
Heyyyy I wish I could help but I don’t know
Answer:
v_{ average} = 5.57
Explanation:
The most probable value of a measure is
v_average =
∑ x_i
where N is the number of measurements
in tes case N = 3
v_{average} = ⅓ (5.63 +5.54 + 5.53)
V_{average} = 5,567
The number of significant figures must be equal to the number of figures that have the least in the readings.
v_{ average} = 5.57
Answer:
(a) 
(b) 
Explanation:
<u>Electric Circuits</u>
Suppose we have a resistive-only electric circuit. The relation between the current I and the voltage V in a resistance R is given by the Ohm's law:

(a) The electromagnetic force of the battery is
and its internal resistance is
. Knowing the equivalent resistance of the headlights is
, we can compute the current of the circuit by using the Kirchhoffs Voltage Law or KVL:

Solving for i

i=2.28\ A
The potential difference across the headlight bulbs is


(b) If the starter motor is operated, taking an additional 35 Amp from the battery, then the total load current is 2.28 A + 35 A = 37.28 A. Thus the output voltage of the battery, that is the voltage that the bulbs have is
