That is more of a History of English question.
Answer:
T = 4.905[N]
Explanation:
In order to solve this problem we must perform a sum of forces on the vertical axis.
∑Fy = 0
We have two forces acting only, the weight of the body down and the tension force T up, as the body does not move we can say that it is system is in static equilibrium, therefore the sum of forces is equal to zero.
![T-m*g=0\\T=0.5*9.81\\T=4.905[N]](https://tex.z-dn.net/?f=T-m%2Ag%3D0%5C%5CT%3D0.5%2A9.81%5C%5CT%3D4.905%5BN%5D)
Answer:
Explanation:
A )
At the bottom of the circle , the potential energy of the stopper is converted into kinetic energy
1/2 m V² = mg x 2r + 1/2 mv²
m is mass of stopper , V is velocity at the bottom , r is radius of the circular path which is length of the string , v is velocity at the top
1/2 V² = g x 2r + 1/2 v²
V² = g x 4r + v²
V² = 9.8 x 4 + 8²
V² = 103.2
V = 10.16 m/s
B )
If T be the tension at the top
Net downward force
= mg + T . This force provides centripetal force for the circular motion
mg +T = mv² / r
T = mv²/r -mg
= m ( v²/r - g )
= .005 ( 8²/1 -g )
= .005 x 54.2
= .27 N .
C ) At the bottom
Net force = T - mg , T is tension at the bottom , V is velocity at bottom
T-mg = mV²/r
T = m ( V²/r +g )
= .005 ( 10.16²/1 +9.8)
= .005 x 113
= .56 N .
"The path difference between the two waves should be one-quarter of a wavelength" is the statement among the choices given in the question that describes the <span>path difference between the two waves. The correct option among all the options that are given in the question is the fifth statement or the penultimate statement.</span>