Answer:
The Equilibrium constant K is far greater than 1; K>>1
Explanation:
The equilibrium constant, K, for any given reaction at equilibrium, is defined as the ratio of the concentration of the products raised to their stoichiometric coefficients divided by the concentration of reactants raised to their stoichiometric coefficients.
It tells us more about how how bigger or smaller the concentration of products is to that of the reactants when a reaction attains equilibrium. From the given data, as the color of the reactant mixture (Br2 is reddish-brown, and H2 is colourless) fades, more of the colorless product (HBr is colorless) is being formed as the reaction approaches equilibrium. This indicates yhat the concentration of products becomes relatively higher than that of the reactants as the reaction progresses towards equilibrium, the equilibrium constant K, must be greater than 1 therefore.
<span>The atoms or molecules attain enough kinetic energy to overcome any intermolecular attractions they have. Since there are no longer any attractive forces between the particles, they are free to drift away into space. The same sort of thing happens in ordinary evaporation, but only at the surface. </span>
Ca(s)+2Hcl(aq) ------>CaCl2(s)+H2(g)
Answer:
5. Selenium, because it does not have a stable, half-filled p subshell and adding an electron does not decrease its stability.
Explanation:
Electron affinity is the amount of energy released when an isolated gaseous atom accepts electron to form the corresponding anion.
Selenium:-
The electronic configuration of the element is:-
![[Ar]3d^{10}4s^24p^4](https://tex.z-dn.net/?f=%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E4)
Arsenic:-
The electronic configuration of the element is:-
![[Ar]3d^{10}4s^24p^3](https://tex.z-dn.net/?f=%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E3)
The 4p orbital in case of arsenic is half filled which makes the element having more stability as compared to selenium.
Thus, selenium has higher electron affinity because adding electron does not decrease the stability as in case of arsenic.
Answer is: a. Rubidium (Rb) is more reactive than strontium (Sr) because strontium atoms must lose more electrons.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Alkaline metals (group 1), in this example rubidium, have lowest ionizations energy and easy remove valence electrons (one electron), they are most reactive metals.
Earth alkaline metals (group 2), in this example strontium, have higher ionization energy than alkaline metals, because they have two valence electrons, they are less reactive.
Rubidium electron configuration: ₃₇Rb 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s¹; one valence electron is 5s¹ orbital.
Strontium electron configuration: ₃₈Sr 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s²; two valence electrons is 5s² orbital.