Answer:
A = 62.5 g
using half life formulas, plug in missing variables.
Answer:
1058.78 ft/sec
Explanation:
Horizontal Component of Velocity; This is the velocity of a body that act on the horizontal axis. I.e Velocity along x-axis
The horizontal velocity of a body can be calculated as shown below.\
Vh = Vcos∅.......................... Equation 1
Where Vh = horizontal component of the velocity, V = The velocity acting between the horizontal and the vertical axis, ∅ = Angle the velocity make with the horizontal.
Given: V = 1178 ft/sec, ∅ = 26°
Substitute into equation 1
Vh = 1178cos26
Vh = 1178(0.8988)
Vh = 1058.78 ft/sec
Hence the horizontal component of the velocity = 1058.78 ft/sec
Answer:
The two moments must be the same:
p1=p2
m1v1=m2v2
v2=(m1v1)/m2
v2=(90 kg x 0.9 m/s)/110kg=0.7 m/s
Explanation:
Given that,
Mass, m = 0.08 kg
Radius of the path, r = 2.7 cm = 0.027 m
The linear acceleration of a yo-yo, a = 5.7 m/s²
We need to find the tension magnitude in the string and the angular acceleration magnitude of the yo‑yo.
(a) Tension :
The net force acting on the string is :
ma=mg-T
T=m(g-a)
Putting all the values,
T = 0.08(9.8-5.7)
= 0.328 N
(b) Angular acceleration,
The relation between the angular and linear acceleration is given by :

(c) Moment of inertia :
The net torque acting on it is,
, I is the moment of inertia
Also, 
So,

Hence, this is the required solution.