Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.
Answer:
1.1 liters
1.2 liters
1.5 liters
Explanation:
Precision in data refers to how close the experimental values of an experiment are to one another irrespective of the true or accepted value. In other words, a set of values are said to be PRECISE if they are close to one another.
In this case, data was collected after conducting an experiment about the amount, in liters, of water a specific plant needs per month. However, according to the set of experimental values provided, only 1.1 litres, 1.2litres and 1.5litres are close to one another and, hence, are said to be PRECISE even if they are not close to the accepted value of 6litres.
Answer:
A)21
Explanation:
To know the difference between the number of electrons in the two atoms, we must first know the number of electrons in the atoms.
For Selenium, Se, we have 34 electrons. The element is in group 6 on the periodic table.
Aluminum on the other hand is in the Boron family with a total of 13 electrons.
The difference,( 34-13) electrons gives a total of 21 electrons