Answer: I would help you but I don’t know the answer, so sorry
Answer:
(a) E = 0 N/C
(b) E = 0 N/C
(c) E = 7.78 x10^5 N/C
Explanation:
We are given a hollow sphere with following parameters:
Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C
R = radius of sphere = 26.1 cm = 0.261 m
Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²
The formula for the electric field intensity is:
E = (1/4πεo)(Q/r²)
where, r = the distance from center of sphere where the intensity is to be found.
(a)
At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.
<u>E = 0 N/C</u>
(b)
Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).
<u>E = 0 N/C</u>
(c)
Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:
E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]
<u>E = 7.78 x10^5 N/C</u>
Answer:
a) P = 86720 N
b) L = 131.2983 mm
Explanation:
σ = 271 MPa = 271*10⁶ Pa
E = 119 GPa = 119*10⁹ Pa
A = 320 mm² = (320 mm²)(1 m² / 10⁶ mm²) = 3.2*10⁻⁴ m²
a) P = ?
We can apply the equation
σ = P / A ⇒ P = σ*A = (271*10⁶ Pa)(3.2*10⁻⁴ m²) = 86720 N
b) L₀ = 131 mm = 0.131 m
We can get ΔL applying the following formula (Hooke's Law):
ΔL = (P*L₀) / (A*E) ⇒ ΔL = (86720 N*0.131 m) / (3.2*10⁻⁴ m²*119*10⁹ Pa)
⇒ ΔL = 2.9832*10⁻⁴ m = 0.2983 mm
Finally we obtain
L = L₀ + ΔL = 131 mm + 0.2983 mm = 131.2983 mm
I’m sure the answer is correct and it is below
“ A catapult works because energy can be converted from one type to another and transferred from one object to another. ... This energy is stored in the launching device as potential, or stored, energy. The catapult you are about to make uses elastic potential energy stored in a wooden stick as you bend it.”