Answer:
A) 6N
Explanation:
the weight of the astronaut on earth can be calculated with the formula
Weight = mass * gravity of earth
Since the gravitational force is one-hundredth of Earth, the formula should be
Weight = mass * (gravity of earth / 100)
Weight = (mass * gravity of earth) / 100
Since you already know the weight, you only need to divide by 100
Weight = (mass * gravity of earth) / 100
Weight = 600N / 100
Weight = 6N
I think it would be Reflection because the light in the ray reflects off of any flat or shiny object.... Hope this helps ^-^....
An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.
<h3>What is an orbit?</h3>
An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.
In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.
Read more on orbit here: brainly.com/question/18496962
#SPJ1
Answer:
T=575.16K
Explanation:
To solve the problem we proceed to use the 1 law of diffusion of flow,
Here,

is the rate in concentration
is the rate in thickness
D is the diffusion coefficient, where,

Replacing D in the first law,

clearing T,

Replacing our values



A vertical polarizing filter is used on the lens of a camera, they block out the light that is horizontally polarized, so they allow all of the vertically polarized<span> light to pass through.</span>