You've given the answer, right there in your question.
The "magnitude of gravity" is described in terms of the acceleration
due to it, and you just told us what that is.
We can also notice that the figure you gave is about 0.66 of the
acceleration due to gravity on the Earth's surface. That tells us that
the distance from the Earth's center at that height is about
(1 / √0.66) = 1.23 times
the Earth's radius, so the height is about 910 miles above the surface.
Gamma ray and x Ray I’m pretty sure. Because they have the shortest wavelengths but the highest energy wave. Hope this helped :)
Answer:The higher up an object is the greater its gravitational potential energy. The larger the distance something falls through the greater the amount of GPE the object loses as it falls. As most of this GPE gets changed into kinetic energy, the higher up the object starts from the faster it will be falling when it hits the ground. So a change in gravitational potential energy depends on the height an object moves through.
Explanation: Lifting an apple up 1 metre is easier work than lifting an apple tree the same height. This is because a tree has more mass, so it needs to be given more gravitational potential energy to reach the same height.
Answer:
C $0.75 my friend I wish it is right answer
The entire mass of the Earth at neutron star density would fit into a sphere of 305 m in diameter