1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
3 years ago
8

CAN SOMEONE PLEASE HELP ME

Physics
2 answers:
VLD [36.1K]3 years ago
7 0

Answer:

she will eventually slow down and come to a stop

lakkis [162]3 years ago
7 0
2: she will eventually slow down and come to a stop
You might be interested in
LO NECESITO PARA HOY URGENTE!! 2. Exprese en metros las siguientes longitudes a) 48,9 km b) 36,875 cm c) 756,34 hm d) 9876 mm
Vesnalui [34]

Answer:

a)48900 metros

b)0.36875 metros

c)75634 metros

d)9.876 metros

Explanation:

Hola, para resolver debemos convertir unidades utilizando equivalencias

a) 48.9 km  

1 kilometro = 1000 metros

48.9 x 1000 = 48900 metros

b) 36.875 cm  

1 centímetro =0.01 metros

36.875 x 0.01 = 0.36875 metros

c) 756,34 hm

1 hectómetro= 100 metros

756.34 x 100 = 75634 metros

d) 9876 mm

1 milímetro = 0.001 m

9876 x 0.001 = 9.876 metros

4 0
3 years ago
A playground merry-go-round has radius 2.40 m and moment of inertia 2100 kg⋅m2 about a vertical axle through its center, and it
daser333 [38]

Answer:

a) 0.31 rad/s

b) 100 J

c) 6.67 W

Explanation:

(a) the force would generate a torque of:

T = FR = 18 * 2.4 = 43.2 Nm

According to Newton 2nd law, the angular acceleration would be

\alpha = \frac{T}{I} = \frac{43.2}{2100} = 0.021 rad/s^2

It starts from rest, then after 15s it would achieve a speed of

\omega = \alpha t = 0.021 * 15 = 0.31 rad/s

(b) The distance angle swept by it is:

\theta = \frac{\alpha t^2}{2} = \frac{0.021 * 15^2}{2} = 2.314 rad

Hence the work by the child

W = T\theta = 43.2 *2.314  \approx 100 J

c) Average power to work per time unit

P = \frac{W}{t} = \frac{100}{15} = 6.67 W

7 0
3 years ago
A geologic event causes changes to the physical makeup of a particular place and occurs _____.
babymother [125]

A geologic event causes changes to the physical makeup of a particular place and occurs slowly.

Geological events are what causes numerous changes and phenomena on the Earth's surface. Examples of these events include cliff erosion, volcanic eruption, or sedimentation at a mouth of a river.

Geological processes are extremely slow. However, because of the immense lengths of time involved, huge physical changes do occur - mountains are created and destroyed, continents form, break up and move over the surface of the Earth, coastlines change and rivers and glaciers erode huge valleys.

Geological events are both classified as internal and external. This means that these events occur both in the Earth's surface and interior.

4 0
3 years ago
Read 2 more answers
When monochromatic light shines perpendicularly on a soap film (n = 1.33) with air on each side, the second smallest nonzero fil
Anika [276]

Let us start from considering monochromatic light as an incidence on the film of a thickness t whose material has an index of refraction n determined by their respective properties.

From this point of view part of the light will be reflated and the other will be transmitted to the thin film. That additional distance traveled by the ray that was reflected from the bottom will be twice the thickness of the thin film at the point where the light strikes. Therefore, this relation of phase differences and additional distance can be expressed mathematically as

2t + \frac{1}{2} \lambda_{film} = (m+\frac{1}{2})\lambda_{film}

We are given the second smallest nonzero thickness at which destructive interference occurs.

This corresponds to, m = 2, therefore

2t = 2\lambda_{film}

t = \lambda_{film}

The index of refraction of soap is given, then

\lambda_{film} = \frac{\lambda_{vacuum}}{n}

Combining the results of all steps we get

t = \frac{\lambda_{vacuum}}{n}

Rearranging, we find

\lambda_{vacuum} = tn

\lambda_{vacuum} = (278)(1.33)

\lambda_{vacuum} = 369.74nm

4 0
3 years ago
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
4 years ago
Other questions:
  • Jupiter's gravitational field is stronger than Earth's. On Jupiter, an object's__________ will be greater than on Earth. What on
    15·1 answer
  • I'm doing something for science but I'm not sure how to answer these questions.
    8·1 answer
  • What is the magnitude (in N/C) and direction of an electric field that exerts a 3.50 ✕ 10−5 N upward force on a −1.55 µC charge?
    15·1 answer
  • A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is
    13·1 answer
  • A 1kg sphere rotates in a circular path of radius 0.2m from rest and it reaches an angular speed of 20rad/sec in 10 second calcu
    11·1 answer
  • A water balloon is dropped off the top of a building and bursts when it hits
    6·1 answer
  • How are galaxies named?
    8·1 answer
  • Jody drives 120 miles south from Kingston, NY to Princeton, NJ. If she drives 60 mph, how long will it take her to make the trip
    13·2 answers
  • The increasing speed of a falling object is caused by
    14·1 answer
  • Can someone please answer this, ill give you brainliest Would be very appreciated.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!