Answer: 0.077 M
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time taken for decay process = 10 minutes
a = initial amount of the reactant= 0.859 M
a - x = amount left after decay process =?
Putting values in above equation, we get:


Thus the concentration of a after 10.0 minutes is 0.077 M.
Answer:
the one with a higher mass
Explanation:
The body with more mass will have the greater kinetic energy of the two.
Kinetic energy is the energy due to the motion of body. It is mathematically expressed as:
K.E =
m v²
m is the mass
v is the velocity
Since the velocity of the two bodies are the same, and mass is directly proportional to kinetic energy, the body with more mass will have a higher kinetic energy.
So between mass m1 and mass m2, the one with a greater mass will have a higher kinetic energy
I’m sure it’s called a circuit:)
The least number of component of a vector quantity is two. These are the x-component and the y-component.
The resultant vector, or vector as we refer to it in this item, can be calculated through the equation,
RV = sqrt ((Vx)² + (Vy)²)
From the equation, it can be noted that if we let Vx equal to zero,
RV = Vy
Similarly, if we let Vy be equal to zero then,
RV = Vx
Thus, it is still possible for the vector to become nonzero even if one of its components is zero.