This easy bro there is only one answer Gravity
but here my advance word
Sometimes the gravity of big objects would capture smaller ones in orbit. This could be one way the planet acquired the moon
Answer:
Ethanol
Explanation:
2 C atoms and a single OH group.
Formula: C2H5OH
Answer:
Vapour pressure of benzene over the solution is 253 torr
Explanation:
According to Raoult's law for a mixture of two liquid component A and B-
vapour pressure of a component (A) in solution = 
vapour pressure of a component (B) in solution = 
Where
are mole fraction of component A and B in solution respectively
are vapour pressure of pure A and pure B respectively
Here mole fraction of benzene in solution is 0.340 and vapour pressure of pure benzene is 745 torr
So, vapour pressure of benzene in solution = 
= 253 torr
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>
The answer is <span>(3) 3 × 12.4 hours
</span>
To calculate this, we will use two equations:


where:
<span>n - number of half-lives
</span>x - remained amount of the sample, in decimals
<span>

- half-life length
</span>t - total time elapsed.
First, we have to calculate x and n. x is <span>remained amount of the sample, so if at the beginning were 16 grams of potassium-42, and now it remained 2 grams, then x is:
2 grams : x % = 16 grams : 100 %
x = 2 grams </span>× 100 percent ÷ 16 grams
x = 12.5% = 0.125
Thus:
<span>

</span>




It is known that the half-life of potassium-42 is 12.36 ≈ 12.4 hours.
Thus:
<span>

</span><span>

</span>

Therefore, it must elapse 3 × 12.4 hours <span>before 16 grams of potassium-42 decays, leaving 2 grams of the original isotope</span>