Answer:
1.88 × 10²⁴ atoms
Explanation:
Step 1: Given data
Mass of sulfur: 100 g
Step 2: Calculate the moles corresponding to 100 g of sulfur
The molar mass of sulfur is 32.07 g/mol. The moles corresponding to 100 g of sulfur are:
100 g × (1 mol/32.07 g) = 3.12 mol
Step 3: Calculate the number of atoms in 3.12 moles of sulfur
We will use Avogadro's number: there are 6.02 × 10²³ atoms of sulfur in 1 mole of sulfur.
3.12 mol × (6.02 × 10²³ atoms/1 mol) = 1.88 × 10²⁴ atoms
<span>Step 1 is to determine the mass of each part
Mass of Ca is 40.08 g
Mass of C is 12.01 g
Mass of O is 16.00 x 3 = 48.00 g
Step 2 is to determine the total mass of the compound
Total mass of CaCO3 is 40.08 + 12.01 + 48.00 = 100.09 g
Step 3 is to determine the % of each part using the following formula:
Mass of part / total mass x 100 =
40.08 / 100.09 x 100 = 40.04 % Ca
12.01 / 100.09 x 100 = 12.00 % C
48.00 / 100.09 x 100 = 47.96 % O
Step 4 is to double check by adding all percentages. If they equal 100, then I probably did it right. :)
40.04
+12.00
+47.96
=100.00</span><span>
</span>
Answer:

Explanation:
Hello there!
In this case, according to this calorimetry problem on equilibrium temperature, it is possible for us to infer that the heat released by the metal allow is absorbed by the water for us to write:

Thus, by writing the aforementioned in terms of mass, specific heat and temperature, we have:

Then, we solve for specific heat of the metallic alloy to obtain:

Thereby, we plug in the given data to obtain:

Regards!
Hey there!
We Know that:
2 Ag⁺(aq) + Zn(s) <-> Zn²⁺(aq)+2 Ag(s)
The equilibrium expression for the reaction is:
Kc = [ Zn⁺² ] / [Ag⁺ ]²
Hope that helps!
A colored line, as long as it is one single piece, not broken