Answer:
Explanation:
Since the wires attract each other , the direction of current will be same in both the wires .
Let I be current in wire which is along x - axis
force of attraction per unit length between the two current carrying wire is given by
x 
where I₁ and I₂ are currents in the wires and d is distance between the two
Putting the given values
285 x 10⁻⁶ = 10⁻⁷ x 
I₂ = 16.76 A
Current in the wire along x axis is 16.76 A
To find point where magnetic field is zero due the these wires
The point will lie between the two wires as current is in the same direction.
Let at y = y , the neutral point lies
k 2 x
= k 2 x 
25.5y = 16.76 x .3 - 16.76y
42.26 y = 5.028
y = .119
= .12 m
terminal velocity ... greater speed ... acc is 10m/s/s
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Change in market price is m<span>ovement along the demand curve. </span>
Answer:
P = 180.81 J
Explanation:
Given that,
Mass of a object, m = 4.1 kg
It is lifted to a height of 4.5 m
We need to find the potential energy of the object due to gravity. It is given by the formula as follows :
P = mgh Where g is acceleration due to gravity
P = 4.1 kg × 9.8 m/s² × 4.5 m
P = 180.81 J
Hence, the potential energy is 180.81 J.