1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
devlian [24]
3 years ago
11

Space vehicles traveling through Earth's radiation belts can intercept a significant number of electrons. The resulting charge b

uildup can damage electronic components and disrupt operations. Suppose a spherical metallic satellite 1.7 m in diameter accumulates 3.1 µC of charge in one orbital revolution. (a) Find the resulting surface charge density. (b) Calculate the magnitude of the electric field just outside the surface of the satellite, due to the surface charge.
Physics
1 answer:
Goshia [24]3 years ago
7 0

Answer:

(a) σ = 3.41*10⁻7C/m^2

(b) E = 38,530.1 N/C

Explanation:

(a) In order to calculate the resulting surface charge density, you use the following formula:

\sigma=\frac{Q}{S}     (1)

σ: surface charge density

Q: charge of the satellite = 3.1 µC = 3.1*10^-6C

S: surface area of the satellite

The satellite has a spherical form, then, the area of the surface is given by:

S=4\pi r^2     (2)

r: radius of the satellite = d/2 = 1.7m/2 = 0.85m

You replace the equation (2) into the equation (1) and solve for the surface charge density:

\sigma=\frac{3.1*10^{-6}C}{4\pi (0.85m)^2}=3.41*10^{-7}\frac{C}{m^2}

The surface charge density acquired by the satellite on one orbit is 3.41*10⁻7C/m^2

(b) The electric field just outside the surface is calculate d by using the following formula:

E=k\frac{Q}{R^2}      (3)

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2

R: radius of the satellite = 0.85m

E=(8.98*10^9Nm^2/C^2)\frac{3.1*10^{-6}C}{(0.85m)^2}=38530.1\frac{N}{C}

The magnitude of the electric field just outside the sphere is 38,530.1 N/C

You might be interested in
An 8-passenger Learjet has a force of gravity of 6.6x10^4 [down] acting on it as it travels at a constant velocity of 6.4x10^2 k
IgorC [24]
Jdnkdudjdjdjfimkgkfkmkdkfkckv
7 0
3 years ago
Environment A is warm and gets lots of rain. Environment B is warmer and gets more rain year round. Identify Environment A.(2 po
zlopas [31]
The Swamp
There are many websites that say the rainforest but the rainforest is warmer and gets rain year round and swamps are warm and gets lots of rain but not year round.
5 0
2 years ago
Imagine an alternate universe where the value of the Planck constant is . In that universe, which of the following objects would
HACTEHA [7]

Question: The planck constant was not given. In this calculation, planck constant of 6.62607*10^-9 Js  is used for the calculation.

Answer:

(a) A virus -------------Classical

(b) A buckyball -----Classical

(c) A mosquito ------ Quantum

(d) A turtle  ------------Quantum

Explanation:

 Calculating the wavelength using the formula;

λ= h/(mv)

where

λ= Wavelength

h = Planck Constant = 6.62607*10^-9 Js

m = mass in kg

v = velocity in m/s

Virus size = 280. nm = 2.80*10⁻⁷ m

a)

A Virus:

m = 9.4 x 10-17 g 9.4*10⁻²⁰ kg

v = 0.50 µm/s = 5 *10⁻⁷ m/s

h = 6.62607*10^-9 Js

Virus size = 280 nm = 2.80*10⁻⁷ m

Substituting into the formula; we have

λ= h/(mv)

λ= 6.62607*10^-9/ (9.4*10⁻²⁰* 5 *10⁻⁷)

  = 6.62607*10^-9/4.7*10^-26

  = 1.4*10^17 m

Classical : Wavelength is bigger than it's size

(b)

A buckyball

m = 1.2 x 10-21 g = 1.2 *10⁻²⁴ kg

V = 37 m/s

Size = 0.7 nm = 7*10⁻¹⁰ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ ( 1.2 *10⁻²⁴* 37)

  =  6.62607*10^-9/4.44*10^-23

  = 1.49 *10^14 m

Classical : Wavelength is bigger than it's size

(c)

A mosquito

Mass = 1.0 mg = 1*10⁻⁶ kg

v = 1.1 m/s

Size =  6.3 mm = 6.3*10⁻³ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  1*10⁻⁶* 1.1)

  =  6.62607*10^-9/1.1*10^-6

  = 6.02*10^-3 m

Quantum Approach: The wavelength and the size are comparable

(d)

A turtle

Mass = 710. g = 0.71 kg

Size =  22. cm = 0.22 m

V =  2.8 cm/s. = 0.028 m/s

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  0.71* 0.028)

  = 6.62607*10^-9/0.01988

   = 3.33*10^-7 m

Quantum Approach: The wavelength and the size are comparable

8 0
3 years ago
Sheila weighs 60 kg and is riding a bike. Her momentum on the bike is 340 kg • m/s. The bike hits a rock, which stops it complet
Vikki [24]

Answer:

v₂ = 5.7 m/s

Explanation:

We will apply the law of conservation of momentum here:

Total\ Initial\ Momentum = m_{1}v_{1} + m_{2}v_{2}\\

where,

Total Initial Momentum = 340 kg.m/s

m₁ = mass of bike

v₁ = final speed of bike = 0 m/s

m₂ = mass of Sheila = 60 kg

v₂ = final speed of Sheila = ?

Therefore,

340\ kg.m/s = m_{1}(0\ m/s) + (60\ kg)v_{2}\\v_{2} = \frac{340\ kg.m/s}{60\ kg}\\\\

<u>v₂ = 5.7 m/s </u>

6 0
3 years ago
[ b) The time of reverberation of an empty hall without and with 500 audiences is 1.5 sec and 1.4 sec respectively. Find the rev
Lilit [14]

The reverberation time with 800 audiences is 0.875 seconds.

<h3>Reverberation time with 800 audience</h3>

R₁V₁ = R₂V₂

where;

  • R₁ is the reverberation time with 400 audience
  • R₂ is the reverberation time with 800 audience
  • V₁ is initial volume
  • V₂ is final volume

R₂ = R₁V₁/V₂

R₂ = (1.4 x 500) / 800

R₂ = 0.875 seconds

Thus, the reverberation time with 800 audiences is 0.875 seconds.

Learn more about reverberation time here: brainly.com/question/9278479

#SPJ1

4 0
2 years ago
Other questions:
  • Calculate A, E, μ, cv and S for 1 mole of Kr at 298 K and 1 atm (assuming ideal behavior)
    13·1 answer
  • I need some help plz!
    8·1 answer
  • What is the electric force between a glass ball that has +2.5 x 10^-6 C of charge and a rubber ball that has -5.0 x 10^-6 C of c
    10·1 answer
  • A sample of tendon 3.00 cm long and 4.00 mm in diameter is found to break under a minimum force of 128 N. If instead the sample
    10·1 answer
  • Light travels at a constant speed of about 300,000 km/s. This speed is referred to as the speed of light. A light year is the di
    11·2 answers
  • Prove that..<br>please help<br>​
    7·1 answer
  • Electric field lines always begin at _______ charges (or at infinity) and end at _______ charges (or at infinity). One could als
    5·1 answer
  • HELP ME !!!Question 4 of 10
    13·2 answers
  • In a physics laboratory experiment, a coil with 250 turns enclosing an area of 11.6 cm2 is rotated during the time interval 3.90
    6·2 answers
  • What is Shortening melting
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!