Hey! I empathize with you, as I just started the energy unit in physics as well!
Alright, lets list what we know, and which equation(s) we need.
PE = Gravitational Potential Energy

m = mass
g = gravity (9.8 m/s^2)
h = height
Guess what?
We need to find the height!
Lets make this more organized:
Known:
m = 40 kg
PE = 14000
g = 9.8 m/s^2
Unknown:
h = ?
================================
Now, if we take a look at the equation PEg = mgh, you will see that we have everything besides the height! So lets solve for the height by substituting in for the variables we know:
14000 J = 40 kg * (9.8 m/s^2) * h
40 * 9.8 = 392
14000 J = 392 * h
14000/392 = h
35.71 m = h
There we go! If you simply list what you know and don't know, you will find the equation you need to solve the problem.
Have a great day and good luck!
Answer:
Zoning ordinances detail whether specific geographic zones are acceptable for residential or commercial purposes. Zoning ordinances may also regulate: - size
- placement
- density
- height of structures
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!
Answer:
Scandium with an ion charge of +3
Explanation:
Answer:
350.72 m/s
Explanation:
Formula for velocity of wave is;
v = fλ
Where;
v is speed
f is frequency
λ is wavelength
We are given;
f = 512 Hz
λ = 0.685 m
Thus;
v = 512 × 0.685
v = 350.72 m/s
Power delivered = (energy delivered) / (time to deliver the energy)
Power delivered = (4,000 J) / (0.5 sec)
Power delivered = 8,000 watts
I'm a little surprised to learn that Electro draws his power from the mains. This is VERY good news for Spiderman ! It means that Spiderman can always avoid tangling with Electro ... all he has to do is stay farther away from Electro than the length of Electro's extension cord.
But OK. Let's assume that Electro draws it all from the mains. Then inevitably, there must be some loss in Electro's conversion process, between the outlet and his fingertips (or wherever he shoots his bolts from).
The efficiency of Electro's internal process is
<em>(power he shoots out) / (power he draws from the mains) </em>.
So, if he delivers energy toward his target at the rate of 8,000 watts, he must draw power from the mains at the rate of
<em>(8,000 watts) / (his internal efficiency) . </em>