Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
Answer: The work is 1863 N*m
Explanation:
We can define work as:
W = F*d
Where F is the force that the mover needs to apply to the refrigerator, and d is the distance that the refrigerator is moved.
To move the refrigerator, the minimal force that the mover needs to do is exactly the friction force (In this case, the refrigerator will move with constant speed).
Then we will have:
F = 230 N
and the distance is 8.1 meters, then the work will be:
W = 230N*8.1 m = 1863 N*m
Answer:
Hello your question is missing some parts attached below is the missing part of your question
answer: <em>many primary sensory Neurons will converge and become a single Neuron and the single Neuron will send a single harmonized signal to the Brain</em>.
Explanation:
The reason regardless of the location that will make you perceive the two points as a single point rather than as two distinct points is that many primary sensory Neurons will converge and become a single Neuron and the single Neuron will send a single harmonized signal to the Brain.
Answer:
at the highest point of the path the acceleration of ball is same as acceleration due to gravity
Explanation:
At the highest point of the path of the ball the speed of the ball becomes zero as the acceleration due to gravity will decelerate the motion of ball due to which the speed of ball will keep on decreasing and finally it comes to rest
So here we will say that at the highest point of the path the speed of the ball comes to zero
now by the force diagram we can say that net force on the ball due to gravity is given by

now the acceleration of ball is given as


so at the highest point of the path the acceleration of ball is same as acceleration due to gravity