1. Who is the father of atomic theory?
Dalton
2. Who discovered the electron?
<span>Thomson
</span>
3. Who expressed particles by wave equations?
<span>Schrödinger
</span>
4. Who researched on radioactivity?
Curie
<span>5. Who discovered the "open spaces" model?
</span><span>Rutherford
</span>
6. Who applied quantum theory to atoms?
<span>Bohr</span>
I believe the statement above is true. The stronger the wind, the larger the particles it erodes<span>. The stronger the wind, the larger the particles that are carried away.
</span>
To solve this, let's assume ideal gas behavior.
PV=nRT
Let's solve for n. Convert units to SI units first.
Pressure = 833 torr(101325 Pa/760 torr) = 111,057.53 Pa
Volume = 250 mL(1 L/1000 mL)(1 m³/1000 L) = 2.5×10⁻⁴ m³
Temperature = 42.4 + 273 = 315.4 K
n = (8,314 J/mol·K)(315.4 K)/(111057.53 Pa)(2.5×10⁻⁴ m³)
n = 94.45 mol
The molar mass of ammonia is 17.031 g/mol.
Mass = 94.45*17.031 = <em>1,608.51 g ammonia</em>
<u>Answer</u>: Light
<em>Computer is an example of light energy which is the third option out of the given four choices.
</em>
<u>Explanation:</u>
We know how a computer works it takes in <em>the electrical energy</em> and does a <em>lot of mathematical mechanical work</em> and for giving answers. It uses a screen on which light blinks in pattern such that it represents letters or mathematical numbers or expressions.
Hence by using this statement we can say <em>computer converts electrical energy into light energy.
</em>