Well give me the options lol
Answer:
Chloroform= limiting reactant
0.209mol of CCl4 is formed
And 32.186g of CCl4 is formed
Explanation:
The equation of reaction
CHCl3 + Cl2= CCl4 + HCl
From the equation 1 mol of
CHCl3 reacts with 1mol Cl2 to yield 1mol of CCl4
From the question
25g of CHCl3 really with Cl2
Molar mass of CHCl3= 119.5
Molar mass of Cl2 = 71
Hence moles of CHCl3= 25/119.5 = 0.209mol
Moles of Cl2 = 25/71 = 0.352mol
Hence CHCl3 is the limiting reactant
Since 1 mole of CHCl3 gave 1mol of CCl4
It implies that 0.209moles of CHCl3 will also give 0.209mol of CCl4
Mass of CCl4 formed = moles× molar mass= 0.209×154= 32.186g
First, we calculate the mass of the sample:
mass = density x volume
mass = 8.48 x 112.5
mass = 954 grams
Now, we will calculate the mass of each component using its percentage mass, then divide it by its atomic mass to find the moles and finally multiply the number of moles by the number of particles in a mole, that is, 6.02 x 10²³.
Zinc mass = 0.37 x 954
Zinc mass = 352.98 g
Zinc moles = 352.98 / 65
Zinc moles = 5.43
Zinc atoms = 5.43 x 6.02 x 10²³
Zinc atoms = 3.27 x 10²⁴
Copper mass = 0.63 x 954
Copper mass = 601.02 g
Copper moles = 601.02 / 64
Copper moles = 9.39
Copper atoms = 9.39 x 6.02 x 10²³
Copper atoms = 5.56 x 10²⁴
Answer:
ΔH°rxn = - 433.1 KJ/mol
Explanation:
- CH4(g) + 4Cl2(g) → CCl4(g) + 4HCl(g)
⇒ ΔH°rxn = 4ΔH°HCl(g) + ΔH°CCl4(g) - 4ΔH°Cl2(g) - ΔH°CH4(g)
∴ ΔH°Cl2(g) = 0 KJ/mol.....pure element in its reference state
∴ ΔH°CCl4(g) = - 138.7 KJ/mol
∴ ΔH°HCl(g) = - 92.3 KJ/mol
∴ ΔH°CH4(g) = - 74.8 KJ/mol
⇒ ΔH°rxn = 4(- 92.3 KJ/mol) + (- 138.7 KJ/mol) - 4(0 KJ/mol) - (- 74.8 KJ/mol)
⇒ ΔH°rxn = - 369.2 KJ/mol - 138.7 KJ/mol - 0 KJ/mol + 74.8 KJ/mol
⇒ ΔH°rxn = - 433.1 KJ/mol
<h3>Given:</h3>
M₁ = 2.0 mol/L
V₁ = 1 L
M₂ = 0.1 mol/L
<h3>Required:</h3>
V₂
<h3>Solution:</h3>
M₁V₁ = M₂V₂
V₂ = M₁V₁ / M₂
V₂ = (2.0 mol/L)(1 L) / (0.1 L)
<u>V₂ = 20 L</u>
Therefore, the volume of the new solution will be 20 L.
#ILoveChemistry
#ILoveYouShaina