I believe that your option C would be the correct answer. We know that water can turn to a solid materail because during cold temperatures, water turns to ice.
We know that water can turn to gas, as water can evaporate.
And also, we know that water is obviosly a liquid.
Therefore, Option C would be your answer.
<span>Anthracite is also referred to as hard coal because it is so hard and pure. It is very hard and highly compacted with variety of coal that has submetallic luster. It has highest carbon content, the lowest impurities, and highest density of energy of all the coal deposits.</span>
The fridge part can, just not the freezer, I think.
<u>Answer:</u> The volume of concentrated solution required is 9.95 mL
<u>Explanation:</u>
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
pH = 0.70
Putting values in above equation, we get:
![0.70=-\log[H^+]](https://tex.z-dn.net/?f=0.70%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=10^{-0.70}=0.199M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-0.70%7D%3D0.199M)
1 mole of nitric acid produces 1 mole of hydrogen ions and 1 mole of nitrate ions.
Molarity of nitric acid = 0.199 M
To calculate the volume of the concentrated solution, we use the equation:

where,
are the molarity and volume of the concentrated nitric acid solution
are the molarity and volume of diluted nitric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of concentrated solution required is 9.95 mL