Answer:

Explanation:
In this case, we can start with the reaction:

If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:


Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):


The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:

Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol
= 48 g
(therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:

I hope it helps!
"Increase Pressure " is the right answer. if you need help , let me know
1) Magnesium Chloride
2) Sodium Bromide
3) Magnesium Oxide
4) Nickel (III) Fluoride
5) Aluminum Chloride
6) <span>Rubidium Sulfide
7) Gallium Nitride
8) Calcium Sulfide
9) </span><span>Lead (IV) Oxide
10) </span><span>Cobalt (II) Oxide
</span>11) B<span>eryllium Sulfide
12) </span><span>Cesium Nitride</span>
1. 254 cal = 1,062.736 joules
2. 126 cal = 527.184 joules
3. 98 cal = 410.032 joules
4. 704 cal = 2,945.536 joules
5. 682 cal = 2,853.488 joules