1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
3 years ago
7

Which of the following sets of properties leads to a high degree of thermal shock resistance? (A) High fracture strength High th

ermal conductivity High modulus of elasticity High coefficient of thermal expansion (B) Low fracture strength Low thermal conductivity Low modulus of elasticity Low coefficient of thermal expansion (C) High fracture strength High thermal conductivity Low modulus of elasticity Low coefficient of thermal expansion (D) Low fracture strength Low thermal conductivity High modulus of elasticity High coefficient of thermal expansion
Physics
1 answer:
Rina8888 [55]3 years ago
4 0

Answer:  

The correct Answer is C) <u>High fracture strength,</u> <u>High Thermal Conductivity,</u> <u>Low modulus of elasticity,</u> <u>Low coefficient of thermal</u>                                                                                                                                                                                                                                              

Explanation:

The ability of a solid to withstand sudden changes in temperature either during heating or cooling is known or referred to as Thermal Shock Resistance (TSR).

Thermal shock resistance is one of the most crucial factors of performance in solids for high temperature environments that can cause thermal stresses and risks for thermal shock damage.

Examples are as of such environments are energy conversion systems, electronic devices and cutting tools.

A common way to evaluate TSR is to look for maximum jump in surface temperature which a material can sustain without cracking.  This is known as thermal conductivity.

Failure due to thermal shock can be prevented by;

  • Reducing the thermal gradient seen by the object, by changing its temperature more slowly or increasing the material's thermal conductivity
  • Reducing the material's coefficient of thermal expansion
  • upping its strength
  • Introducing built-in compressive stress, as for example in tempered glass and in some cases tempered plastic
  • reducing its Young's modulus
  • increasing its toughness, by crack tip blunting (i.e., plasticity or phase transformation) or crack deflection

Thermal conductivity is an intensive physical property of a material that relates the heat flow through the material per unit area to temperature gradient across the material. The thermal conductivity of a material is basically a measure of its ability to conduct heat.    

The other factor that contributes to a high degree of thermal shock is:

Fracture Strength: This is the ability of a material containing a crack to resist fracture or resist becoming brittle. For example, glass has a high strength, but the presence of a small fracture reduces the strength. Therefore, glass has low fracture resistance. Fracture toughness is an important consideration in hydraulic fracture design.

Modulus of Elasticity:

An object or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it is calculated  or measured by a quantity known as Elastic Modulus (also known as Young modulus of elasticity)

A stiff material has a high Young's modulus and changes its shape only slightly under elastic loads (e.g. steel or diamond). A flexible material has a low Young's modulus and changes its shape considerably (e.g. rubbers).

Coefficient of thermal expansion (CTE) this refers to how the rate of change in the  size of an object with respect of every degree change in temperature assuming that pressure remains the same. An object with low CTE is Fine Ceramics or Advanced Ceramics.

Cheers!

               

You might be interested in
Assume that Parker Company will receive SF200,000 in 360 days. Assume the following interest rates:
Anna35 [415]

Answer:

b.  $96,914

Explanation:

360-day borrowing rate = 5%

spot rate = 0.48

360-day deposit rate  = 6%

Borrow at the rate of 5% to get

SF200,000/1.05 = $190,476.19

Convert at the spot rate of $0.48 to get

190,476.19*0.48 = $91,428.57

Invest at the interest rate of 6% to get

91,428.57/1.06 = 96,914.28

Therefore, Parker Company will receive $96,914 in 360 days.

7 0
3 years ago
Which of the following describe an electrical motor? Check all that apply
weeeeeb [17]

Answer:

changes electrical energy into mechanical energy

5 0
3 years ago
What happens to the volume of a loaf of bread that is squeezed? The mass? The density?
nalin [4]

Explanation:

The volume of the bread decreases, making the bread appear more compact, and smaller in size. The mass stays the same, it won't change unless part of the bread is removed. The density increases, the air bubbles inside of the bread get squished down, causing the bread to be smaller, and in turn, causing it to be more solid.

I hope this helped!

Thanks!

Your friend in answering,

~Steve

3 0
3 years ago
Water vapor enters a turbine operating at steady state at 500°C, 40 bar, with a velocity of 200 m/s, and expands adiabatically t
faltersainse [42]

Answer:

W = 5701 KW

Explanation:

From the question let inlet be labelled as point 1 and exit as point 2, for the fluid steam, we can get the following;

Inlet (1): P1 = 40 bar ; T1 = 500°C and V1 = 200 m/s

Exit(2) : At saturated vapour; P2 = 0.8 bar and V2 = 150 m/s

Volumetric flow rate = 15 m^(3)/s

Now, to solve this question, we assume constant average values, steeady flow and adiabatic flow.

Specific volume for steam at P2 = 0.8 bar in the saturated vapour state can be gotten from saturated steam tables(find a sample of the table attached to this answer).

So from the table,

v2 = 2.087 m^(3)/kg

Now, mass flow rate (m) = (AV) /v

Where AV is the volumetric flow rate.

Thus, the mass flow rate at exit could be calculated as;

m = 15/(2.087) = 7.17 kg/s

We also know energy equation could be defined as;

Q-W = m[(h1 - h2) + {(V2(^2) - (V1(^2)} /2)} + g(Z2 - Z1)]

Since the flow is adiabatic, potential energy can be taken to be zero. Therefore, we get;

-W = m[(h2 - h1) + {(V2(^2) - (V1(^2)} /2)}

From, table 2, i attached , at P1 = 40 bar and T1 = 500°C; specific enthalpy was calculated to be h1 = 3445.3 KJ/Kg

Likewise, at P2 = 0.8 bar; from the table, we get specific enthalpy as;

h2 = 2665.8 KJ/Kg

So we now calculate power developed;

W = - 7.17 [(2665.8 - 3445.3) + {(150^(2) - 200^(2))/2000 = 5701KW

Since the sign is not negative but positive, it means that the power is developed from the system.

4 0
3 years ago
Imagine a sunny day at the pool. The sun is out and you are thinking about how the light travels from the sun and then hits the
Dovator [93]

Answer:

it evaporats

Explanation:

because the sun is so hot that the water will turn into gas hope i helped

5 0
3 years ago
Read 2 more answers
Other questions:
  • An investigator places a sample 1.0 cm from a wire carrying a large current; the strength of the magnetic field has a particular
    9·1 answer
  • If the architectural plans show the rough opening of a window to be 3'-3" x 4'-9" , the height of the opening should actually me
    7·1 answer
  • What formula gives the strength of an electric field, E, at a distance from a known source change?
    11·2 answers
  • Of the following properties of a wave, which of the following is independent of the others? amplitude speed wavelength frequency
    14·2 answers
  • Using the periodic table, predict the formulas of stable ionic compounds. Select THREE that are correct.
    13·2 answers
  • Determine el valor de la potencia electrica que experimente un circuito cual se somete a 120 voltios emitidos por accion de las
    15·1 answer
  • What is an electric current​
    14·2 answers
  • Why are some of the rocks on the moon older than the oldest known rocks on Earth?
    10·2 answers
  • PLEASE AWNSER CORRECTLY AND ILL GIVE BRAINLIEST
    13·1 answer
  • When one does twice the work in twice the time, the power expended is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!