1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
3 years ago
15

Your local AM radio station broadcasts at a frequency of f = 1100 kHz. The electric-field component of the signal you receive at

your home has the time dependence E(t) = E0 sin(2πft), where the amplitude is E0 = 0.62 N/C. Radio waves travel through air at approximately the speed of light.
a) At what wavelength, in meters, docs this station broadcast?
b) What is the value of the radio wave's electric field, in newtons per coulomb, at your home at a time of t = 3.1 μs?
Physics
1 answer:
Lina20 [59]3 years ago
6 0

Answer:

(a) 272.73 m

(b) 0.338 N/C

Explanation:

frequency, f = 1100 kHz = 1100 x 1000 Hz

E(t) = Eo Sin(2πft)

Eo = 0.62 N/C

(a) Velocity of light, c = 3 x 10^8 m/s

wavelength, λ = c / f = (3 x 10^8) / (1100000) = 272.73 m

Thus, the wavelength is 272.73 m.

(b) at t = 3.1 microsecond = 3.1 x 10^-6 s

E = Eo Sin (2 π ft)

E = 0.62 Sin (2 x 3.14 x 1100 x 10^3 x 3.1 x 10^-6)

E = 0.62 Sin (21.4148)

E = 0.62 x 0.5449 = 0.338 N/C

Thus, the electric field at t = 3.1 microsecond s 0.338 N/C.

You might be interested in
How do I do these? My teacher didn’t show us how.
melisa1 [442]

Explanation:

Displacement is simply the change in position.  So in the first part of problem 1, looking at the graph between 0 s and 2 s, the position changes from 0 m to -4 m.  So the displacement is:

Δx =  -4 m − 0 m

Δx = -4 m

Between 2 s and 4 s, the position stays at -4 m.  The displacement is:

Δx = -4 m − (-4 m)

Δx = 0 m

Finally, between 4 s and 6 s, the position goes from -4 m to 6 m.  The displacement is:

Δx = 6 m − (-4 m)

Δx = 10 m

The net displacement is the change in position from 0 s to 6 s:

Δx = 6 m − 0 m

Δx = 6 m

In the second part of problem 1, we have a velocity vs time graph.

Car 1 starts with 0 velocity and ends with a velocity of 6 m/s, so it is accelerating and constantly moving to the right.

Car 2 starts with a velocity of -6 m/s and ends with a velocity of 6 m/s.  It is also accelerating, but first it is moving to the left, comes to a stop at t = 3 s, then moves to the right.

Car 3 starts with a velocity of 2 m/s and ends with a velocity of 2 m/s.  So it is moving constantly to the right, but never speeds up or slows down.

We want to know when two of the cars meet.  Unfortunately, this isn't as easy as looking for where the lines cross on the graph.  We need to calculate their displacements.  We can do this by finding the area under the graph (assuming all the cars start from the same point).

Let's start with Car 2.  Half of the area is below the x-axis, and half is above.  Without doing calculations, we can say the total displacement for this car is 0.  This means it ends back up where it started, and that it never meets either of the other cars, both of which have positive displacements.

So we know Car 1 and Car 3 meet, we just have to find where and when.  For Car 1, the area under the curve is a triangle.  So its displacement is:

Δx = ½ t v(t)

where t is the time and v(t) is the velocity of Car 1 at that time.  Since the line has a slope of 1 and y intercept of 0, we know v(t) = t.  So:

Δx = ½ t²

Now look at Car 3.  The area under the curve is a rectangle.  So its displacement is:

Δx = 2t

When the two cars have the same displacement:

½ t² = 2t

t² = 4t

t² − 4t = 0

t (t − 4) = 0

t = 0, 4

t = 0 refers to the time when both cars are at the starting point, so t = 4 is the answer we're looking for.  Where are the cars at this time?  Simply plug in t = 4 into either of the equations we found:

Δx = 8

So Cars 1 and 3 meet at 4 s and 8 m.

7 0
2 years ago
Describe a scenario where a car's speed could stay the same, but the acceleration changes.
k0ka [10]

Answer:

An object's acceleration is the rate its velocity (speed and direction) changes. Therefore, an object can accelerate even if its speed is constant - if its direction changes.

Explanation:

8 0
3 years ago
A subway train is traveling at 22.2 m/s when it approaches a slower train 50m ahead traveling in the same direction at 6.94 m/s.
Amiraneli [1.4K]

Answer:

Time that they collide = 4.99s

Relative speed of the trains when they collide: The relative speed of The first train relative to the second, slower train at collision = 4.781 m/s

Explanation:

We will use the equations of motion to obtain the solution required

At time t = 0

speed of first train = 22.2 m/s

Initial space between the two trains = 50 m

Speed of second train = 6.94 m/s

For the first car, distance covered by the first train = y

y = distance covered between the beginning of the deceleration and the point where the the two trains hit one another.

u = initial velocity = 22.2 m/s

t = time taken for all this to happen

a = deceleration = - 2.1 m/s²

y = ut + (1/2)at²

y = 22.2t - 1.05t² (eqn 1)

For the second train,

At t = 0, y = 50 m

Let the new distance moved by the second train before collision = (y - 50)

u = initial velocity = 6.94 m/s

t = time taken = t

a = acceleration of the second train = 0 m/s² (constant velocity)

(y - 50) = ut + (1/2)at²

y - 50 = 6.94t

y = 6.94t + 50 (eqn 2)

substituting for y in eqn 2 using the expression obtained in eqn 1

y = 22.2t - 1.05t²

y = 6.94t + 50

22.2t - 1.05t² = 6.94t + 50

1.05t² - 15.26t + 50 = 0

Solving this quadratic equation

t = 4.99 s or 9.54 s

The position of the two trains are the same at those two times, but the first time is when they hit each other.

t = 4.99 s

At 4.99 s, the the velocity of the first train

v = u + at

v = 22.2 + (-2.1×4.99) = 11.721 m/s in the same direction as the second train.

Relative velocity at this point will be

= 11.721 - 6.94 = 4.781 m/s

Relative speed of the trains when they collide: The relative speed of The first train relative to the second, slower train at collision = 4.781 m/s

Hope this Helps!!!

4 0
2 years ago
1 Point
irakobra [83]

Answer:

SECOND LAW OF NEWTON

Explanation:

When the rocket fires the engines the gases leave at high speed and collide with the space station, transferring an impulse given by the expression

                I = F t = Δp

As we can see this expression is a form of Newton's second law

           F = m a

           a = dv / dt

           F = m dv / dt

           F dt = m dv

           p = mv

           F dt = dp

Therefore the station moves through the SECOND LAW OF NEWTON

7 0
2 years ago
When light is reflected, the incident rays are bent and change direction.<br> True<br> False
Helga [31]

Answer: True

Explanation: When light is reflected off lets say a mirror it is bent and changes direction to bounce off of another wall or object. For example if you take a flash light and shine it into a mirror the light reflects into a different direction your welcome

8 0
3 years ago
Read 2 more answers
Other questions:
  • 15. The
    7·1 answer
  • If the number of homes with a pet dog is equal to 250, how many total homes are represented by the chart?
    6·1 answer
  • Calculate the wavelength in centimeters of radar energy at a frequency of 10 GHz. What is the frequency in gigahertz of radar en
    15·1 answer
  • A 15,000 N truck starts from rest and moves down a 15∘ hill with the engine providing a 8,000 N force in the direction of the mo
    13·1 answer
  • An early planetary model of the hydrogen atom consisted of a 1.67 X 10-27 kg proton in the nucleus and a 9.11 X 10-31 kg electro
    11·1 answer
  • A cylindrical test specimen with a 15-mm diameter is tested axially in tension. A 0.58 mm elongation is recorded in a length of
    6·1 answer
  • Which statements are true about moving the compass around the wire
    12·1 answer
  • What type of weather does Los Angeles, California have?
    11·2 answers
  • The agonist in a movement is the muscle that provides the major force to complete the movement
    11·1 answer
  • What causes global winds?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!