Answer:
Metal more reactive than non metal
The salt contains ionic bond so that it dissociate ultimately by the movement of ion electricity is conducted
Answer:
Hey mate....
Explanation:
This is ur answer.....
<h2>
Solar radiation can be converted either into thermal energy (heat) or into electrical energy.</h2>
Hope it helps!
mark me brainliest plz......
Follow me! :)
Answer : The activation energy of the reaction is, 
Solution :
The relation between the rate constant the activation energy is,
![\log \frac{K_2}{K_1}=\frac{Ea}{2.303\times R}\times [\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%5Cfrac%7BK_2%7D%7BK_1%7D%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial rate constant = 
= final rate constant = 
= initial temperature = 
= final temperature = 
R = gas constant = 8.314 kJ/moleK
Ea = activation energy
Now put all the given values in the above formula, we get the activation energy.
![\log \frac{8.75\times 10^{-3}L/mole\text{ s}}{4.55\times 10^{-5}L/mole\text{ s}}=\frac{Ea}{2.303\times (8.314kJ/moleK)}\times [\frac{1}{468K}-\frac{1}{531K}]](https://tex.z-dn.net/?f=%5Clog%20%5Cfrac%7B8.75%5Ctimes%2010%5E%7B-3%7DL%2Fmole%5Ctext%7B%20s%7D%7D%7B4.55%5Ctimes%2010%5E%7B-5%7DL%2Fmole%5Ctext%7B%20s%7D%7D%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20%288.314kJ%2FmoleK%29%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7B468K%7D-%5Cfrac%7B1%7D%7B531K%7D%5D)

Therefore, the activation energy of the reaction is, 