Answer:
<h3>1.03684m</h3>
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g where
R is the distance moves in horizontal direction = 18.4m
H is the height
U is the velocity of the baseball = 40m/s
g is the acceleration due to gravity = 9.8m/s²
Substitute the given parameters into the formula and calculate H as shown;
18.4 = 40√2H/9.8
18.4/40 = √2H/9.8
0.46 = √2H/9.8
square both sides;
(0.46)² = (√2H/9.8)²
0.2116 = 2H/9.8
2H = 9.8*0.2116
2H = 2.07368
H = 2.07368/2
H = 1.03684m
Hence the ball is 1.03684m below the launch height when it reached home plate.
This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute
According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.