1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alina1380 [7]
3 years ago
15

What mass (in grams) of Mg(NO3)2 is present in 151 mL of a 0.350 M solution of Mg(NO3)2?

Chemistry
2 answers:
Mademuasel [1]3 years ago
6 0

Answer is: A) 7.84 g.

V(Mg(NO₃)₂) = 151 mL ÷ 1000 mL/L.

V(Mg(NO₃)₂) = 0.151 L; volume of the magnesium nitrate.

c(Mg(NO₃)₂) = 0.352 M; molarity of the solution.

n(Mg(NO₃)₂) = V(Mg(NO₃)₂) · c(Mg(NO₃)₂).

n(Mg(NO₃)₂) ) = 0.151 L · 0.352 mol/L.

n(Mg(NO₃)₂) = 0.0531 mol; amount of the substance.

M(Mg(NO₃)₂) = Ar(Mg) + 2Ar(N) + 6Ar(O) · g/mol.

M(Mg(NO₃)₂) = 24.3 + 2·14 + 6·16 · g/mol.

M(Mg(NO₃)₂) = 148.3 g/mol; molar mass.

m(Mg(NO₃)₂) = n(Mg(NO₃)₂) · M(Mg(NO₃)₂).

m(Mg(NO₃)₂) = 0.0531 mol · 148.3 g/mol.

m(Mg(NO₃)₂) = 7.84; mass of magnesium nitrate.

kobusy [5.1K]3 years ago
3 0

The correct option is\boxed{{\mathbf{A}}{\mathbf{. 7}}{\mathbf{.84 g}}}.

Further explanation:

Mole is the S.I. unit. The number of moles is calculated as the ratio of mass of the compound to that of molar mass of the compound.

Molar mass also known as molecular weight is the sum of the total mass in grams of all the atoms that make up a mole of a particular molecule that is the mass of 1 mole of a compound. Its S.I unit is g/mol.

The expression to relate number of moles, mass and molar mass of compound is as follows:

{\text{Number of moles}}=\frac{{{\text{mass of the compound}}}}{{{\text{molar mass of the compound}}}}       …… (1)

Molarity:

The molarity is the concentration of the solution and is equal to the number of moles of the solute dissolved in liter of the solution.

The expression to relate molarity (M), volume (V), and the number of moles (n) is as follows:

{\text{M}}=\frac{{{\text{n}}\left({{\text{mol}}}\right)}}{{{\text{V}}\left({\text{L}}\right)}}                 …… (2)

Here, V is a volume of solution in liters and n is a number of moles of solute.

The conversion factor to convert volume in liter (L) to (mL) is written as follows:

{\text{1L}}=1000\;{\text{mL}}

Given volume of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}solution is 151 mL.

Therefore, 151 mL of volume is converted into (L) as follows:

\begin{aligned}{\text{Volume}}&=\,151{\text{ mL}}\left({\frac{{{\text{1}}\;{\text{L}}}}{{1000\;{\text{mL}}}}}\right)\\&=0.151{\text{ L}}\\\end{aligned}

On rearranging equation (2) for n, we get,

{\text{n(mol)}}={\text{M}}\times{\text{V(L)}}                   …… (3)

Concentration of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}} solution (M) is 0.350 M.

Volume of{\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}} solution is 0.151 L.

Substitute these values in equation (3) to calculate the number of moles (n).

\begin{aligned}{\text{n}}\left({{\text{mol}}}\right)&={\text{(0}}{\text{.350 M)}}\left( {\frac{{1\;{\text{mol/L}}}}{{{\text{1}}\;{\text{M}}}}}\right)\times\left({{\text{0}}{\text{.151 L}}}\right)\\&={\text{0}}{\text{.05285 mol}}\\\end{aligned}

The number of moles (n) of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}is 0.05285 mol.

The formula to calculate the mass of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}.

{\text{Mass of Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}={\text{moles of Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\times {\text{molar mass of}}\;{\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}         …… (4)

Molar mass of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}is 148.3g/mol.

Moles of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}is 0.05285 mol.

Substitute these values in equation (4) to calculate the mass of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}.

\begin{aligned}{\text{Mass of Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}&=\left({{\text{0}}{\text{.05285}}\;{\text{mol}}}\right)\times\left({{\text{148}}{\text{.3}}\;{\text{g/mol}}}\right)\\&={\text{7}}{\text{.8376 g}}\\&\approx{\text{7}}{\text{.84 g}}\\\end{aligned}

Hence, 7.84 g of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}is present in 151 mL of 0.350 M of {\text{Mg(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}solution.

Learn more:

1. What is the concentration of acid brainly.com/question/6447527

2. Ranking of photons according to the wavelength of transition: brainly.com/question/2055545

Answer details:

Grade: SeniorSchool

Subject: Chemistry

Chapter: Solutions

Keywords: mole, molarity, volume, concentration, 151 mL,0.350M, 0.05285 mol, 148.3g/mol.

You might be interested in
A membrane Is a flexible outer layer found on:
ratelena [41]

Answeridk:

Explanation:isk

8 0
3 years ago
Without consulting Appendix B, arrange each group in order of increasing standard molar entropy (S°). Explain.(c) SF₆(g), SF₄(g)
Andre45 [30]

The increasing order of standard molar entropy (S°) is as follow:

SF₄(g) < SF₆(g) < S₂F₁₀(g)

<h3>What is Entropy? </h3>

Entropy is defined as the randomness of the particle. It depends on temperature and pressure or number of particle per unit volume.

It is directly proportional to the temperature and pressure of the gas.

<h3>What is Standard Molar Entropy? </h3>

The standard molar entropy is defined as the entropy content of the one mole of pure substance at the standard state of temperature and pressure of interest.

The standard molar entropy is also defined as the total amount of entropy which 1 mole of the substance acquire, as it is brought from 0K to standard conditions of temperature and pressure.

The standard molar entropy depends on the molas mass of atom, molecules or compound.

SF₄(g) has lower standard molar entropy. Due to less complexity of this molecules.

While, complexity increases from SF₆(g) to S₂F₁₀(g). Therefore, the standard molar entropy of S₂F₁₀(g) is greater than SF₆(g).

Thus, we concluded that the increasing order of standard molar entropy (S°) is as follow:

SF₄(g) < SF₆(g) < S₂F₁₀(g)

learn more about standard molar entropy:

brainly.com/question/15908262

#SPJ4

7 0
2 years ago
The number of moles of hydrogen that are needed to produce .253 moles of water​
Brut [27]

Answer:

454

Explanation:

j

8 0
3 years ago
A bottle contains 158.1 grams of lead (II) sulfate (PbSO4), used for car batteries. How many moles does it contain?
Zinaida [17]
I hope this helps :)

7 0
2 years ago
Igneous rock___to form magma a)melts b)weathers c)compacts d)crystallizes NEED HELP ASAP
dangina [55]

Answer:

should be A)Melts.Because magma is liquid i think

5 0
3 years ago
Read 2 more answers
Other questions:
  • More help please!?!?!?!?!
    13·2 answers
  • The initial temperature of the water is 25 C. After the reaction, the temperature of the water is 62.8 C. Disregarding any heat
    9·1 answer
  • The remora attaches itself to sharks by means of its mouth. It gets free transportation and protection and also the remnants of
    13·2 answers
  • A sample of a compound contains 3.21 g of sulfur and 11.4 g of fluorine. Which of the following represents the empirical formula
    7·1 answer
  • Calculate the pH of a 0.30 M NaF solution. The Ka value for HF is 7.2*10^-4
    6·1 answer
  • Choose the most alkaline substance in the group.
    8·1 answer
  • Who will win the super bowl? Kansas City Chiefs Or the Tampa Bay Buccaneers
    15·2 answers
  • Based on the electron configuration of the two atoms, predict the ratio of metal cationic (+) atom to nonmetal anionic (-) atom
    7·1 answer
  • How many atoms are in 5.2 moles of Na ?
    9·1 answer
  • Drag the tiles to the correct boxes. Not all tiles will be used.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!