<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
<em>✔ We have: KE = PE (potential energy) </em>
<em>PE = m x g x h </em>
The potential energy that the pebble of mass 1 has is called PE1 and the potential energy that the pebble of mass 2 has is called PE2
PE1 = PE2 ⇔ PE1/PE2 = 1

The mass m1 is therefore 4 times greater than that of the stone of mass m2.
The correct answer would be the first option. The process that would need more energy would be vaporizing 1 kg of saturated liquid water at a pressure of 1 atmosphere. This can be seen from the latent heat of vaporization of each system. For the saturated water at 1 atm, the latent heat is equal to 40.7 kJ per mole while, at 8 atm, the latent heat is equal to 36.4 kJ per mole. The latent heat of vaporization is the amount of heat needed in order to vaporize a specific amount of substance without any change in the temperature. As we can observe, more energy is needed by the liquid water at 1 atm.
Answer:
4.5 s, 324 ft
Explanation:
The object is projected upward with an initial velocity of

The equation that describes its height at time t is
(1)
where t, the time, is measured in seconds.
In order to find the time it takes for the object to reach the maximum height, we must find an expression for its velocity at time t, which can be found by calculating the derivative of the position, s(t):
(2)
At the maximum heigth, the vertical velocity is zero:
v(t) = 0
Substituting into the equation above, we find the corresponding time at which the object reaches the maximum height:

And by substituting this value into eq.(1), we also find the maximum height:

Answer:
The value is 
Explanation:
From the question we are told that
The operating temperature is 
The emissivity is 
The power rating is 
Generally the area is mathematically represented as

Where
is the Stefan Boltzmann constant with value

So


Answer:


Explanation:
<u>Displacement
</u>
It's a vector magnitude that measures the space traveled by a particle between an initial and a final position. The total displacement can be obtained by adding the vectors of each individual displacement. In the case of two displacements:

Given a vector as its polar coordinates (r,\theta), the corresponding rectangular coordinates are computed with


And the vector is expressed as

The monkey first makes a displacement given by (0.198 km,0°). The angle is 0 because it goes to the East, the zero-reference for angles. Thus the first displacement is

The second move is (145 m , -15.8°). The angle is negative because it points South of East. The second displacement is

The total displacement is


In (magnitude,angle) form:



