Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
Answer:
Mount Everest formed from a tectonic smashup between the Indian and Eurasian tectonic plates tens of millions of years ago.
Explanation:
Both cells are formed in bone marrow.....but t cells matures into thymus....and b cells matures into bone marrow ! both helps in defense !
B cells can connect to antigens right on the surface of the invading virus or bacteria.
T- cells can only connect to virus antigens on the outside of infected cells.
for more info , comment !
Answer:
250 J
Explanation:
Apply the formula:
K = 1/2.m.v²
K = 1/2.5.10²
K = 1/2.5.100
K = 5.50
K = 250 Joules
But, remember that if the speed is accelerating or not, if it is, then we need to know the point in time that the question is asking for the Kinetic Energy.
In this case, I think it is just a constant speed.
Answer:
The friction force is 250 N
Explanation:
The desk is moving at constant velocity. This means that its acceleration is zero: a = 0. Newton's second law states that the resultant of the forces acting on the desk is equal to the product between mass (m) and acceleration (a):

In this case, we know that the acceleration is zero: a = 0, so also the resultant of the forces must be zero:
(1)
We are only interested in the forces acting along the horizontal direction, since it is the direction of motion. There are two forces acting in this direction:
- the pull, forward, F = 250 N
- the friction force, backward, 
Given (1), we have

So the force of friction must be equal to the pull:
