Answer:
Since KOH is a strong base, the solution completely ionizes into K+ and OH- when in water. The reaction KOH --> K+ + OH- takes place. The concentration of [ OH- ] can then be used to calculate the pOH of the solution. pH = 14 - pOH = 14 - 1.48 = 12.52
Explanation:
Answer:
V of Sulfur tetrafluoride is 17.2 L
Explanation:
Given data;
T = -6°C = 267K [1° C = 273 K]
n = 786 mmol of SF4 which is 0.786 mol
P = 1 atm
from ideal gas law we have
PV = nRT
where n is mole, R is gas constant, V is volume


V of Sulfur tetrafluoride is 17.2 L
Answer:

Raoult's law states that the vapor pressure of a solvent above a solution is equal to the vapor pressure of the pure solvent at the same temperature scaled by the mole fraction of the solvent present: Psolution=χsolventPosolvent.
Answer:
e- 7.25 x 10³.
Explanation:
∵ ΔG = -RTlnK,
where, ΔG is the free energy change.
R is the general gas constant (R = 8.324 J/mol.K).
K is the equilibrium constant of the reaction.
- For the reaction: <em>N₂(g) + 3H₂(g) → 2NH₃(g),</em>
K = (PNH₃)²/(PN₂)(PH₂)³ = (0.65)²/(1.9)(1.6)³ = 5.43 x 10⁻².
∵ ΔG = -RTlnK.
∴ ΔG = -(8.314 J/mol.K)(298 K) ln(5.43 x 10⁻²) = 7.218 x 10³ J/mol.
A bronsted lowry base will react to accept protons