Answer:
Explanation:
Given data:
flow rate = 10 gallon per minute = 0.0223 ft^3/sec
diameter = 0.75 inch
we know discharge is given as
Q = VA
solve for velocity V = \frac{Q}{A}[/tex]
V = 7.27 ft/sec
we know that Reynold number
calculate the ratio to determine the fanning friction f
from moody diagram f value corresonding to Re and is 0.037
for horizontal pipe
where 1.94 slug/ft^3is density of water
Answer:
12.332 KW
The positive sign indicates work done by the system ( Turbine )
Explanation:
Stagnation pressure( P1 ) = 900 kPa
Stagnation temperature ( T1 ) = 658K
Expanded stagnation pressure ( P2 ) = 100 kPa
Expansion process is Isentropic, also assume steady state condition
mass flow rate ( m ) = 0.04 kg/s
<u>Calculate the Turbine power </u>
Assuming a steady state condition
( p1 / p2 )^(r-1/r) = ( T1 / T2 )
= (900 / 100)^(1.4-1/1.4) = ( 658 / T2 )
= ( 9 )^0.285 = 658 / T2
∴ T2 = 351.22 K
Finally Turbine Power / power developed can be calculated as
Wt = mCp ( T1 - T2 )
= 0.04 * 1.005 ( 658 - 351.22 )
= 12.332 KW
The positive sign indicates work done by the system ( Turbine )
Answer:
hhahhhwghwhwhwhwjwnwjnnnnwnwwnw
Explanation:
jwkwkkwoiwiwiwiwiwowwiwowowiiiiwuuwuwgeevehehsvhsvwhbhhehehwgjjwhwhjwjqwjjuuuwi####!\\\\e
The privilege of driving comes with responsibility