Answer:
16.9g of H₂O can be formed
Explanation:
Based on the chemical reaction, 2 moles of H₂ react per mole of O₂. To anser this question we must find limiting reactant converting the mass and volume of each reactant to moles:
<em>Moles H₂ -Molar mass: 2.016g/mol-:</em>
8.76g * (1mol / 2.016g) = 4.345 moles
<em>Moles O₂:</em>
PV = nRT
PV/RT = n
P = 1atm at STP
V = 10.5L
R = 0.082atmL/molK
T = 273.15K at STP
n = 1atm*10.5L / 0.082atmL/molK*273.15K
n = 0.469 moles of oxygen
For a complete reaction of 4.345 moles moles of hydrogen are required:
4.345 moles H2 * (1mol O2 / 2mol H2) = 2.173 moles of O2 are required. As there are just 0.469 moles, Oxygen is limiting reactant
Now, 1 mole of O2 produce 2 moles of H2O. 0.469 moles will produce:
0.469 moles O₂ * (2 moles H₂O / 1mol O₂) = 0.938 moles H₂O.
The mass is -Molar mas H₂O = 18.01g/mol-:
0.938 moles * (18.01g/mol) =
<h3>16.9g of H₂O can be formed</h3>
Answer:
the overall charge on the nitride anion is
(
3
−
)
.
N power 3
− →
the nitride anion
Answer:
The temperatures on Earth increase
Explanation:
more energy results in more heat.
Answer: 4
Explanation:
Principle Quantum Numbers: This quantum number describes the size of the orbital. It is represented by n.
Azimuthal Quantum Number: This quantum number describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic Quantum Number: This quantum number describes the orientation of the orbitals. It is represented as
. The value of this quantum number ranges from
. When l = 2, the value of
will be -2, -1, 0, +1, +2.
Given : a f subshell, thus l = 3 , Thus the subshells present would be 3, 2, 1, 0 and thus n will have a value of 4.
Also electrons give are 32.
The formula for number of electrons is
.


Thus principal quantum no will be n= 4.
Answer:
c. can have a large cumulative effect
Explanation:
Noncovalent interactions between molecules are weaker than covalent interactions. Noncovalent interactions between molecules are of various types which include van der Waals forces, hydrogen bonding, and electrostatic interactions or ionic bonding.
van der Waals forces are weak interactions found in all molecules. They include dipole-dipole interactions - formed due to the differences in the electronegativity of atoms - and the London dispersion forces.
Hydrogen Bonds results when electrons are shared between hydrogen and a strongly electronegative atoms like fluorine, nitrogen, oxygen. The hydrogen acquires a partial positive charge while the electronegative atom acquires a partial negative. This results in attraction between hydrogen and neighboring electronegative molecules.
Ionic bonds result due to the attraction between groups with opposite electrical charges, for example in common salt between sodium and chloride ions.
Even though these noncovalent interactions are weak, cumulatively, they exert strong effect. For example, the high boiling point of water and the crystal structure of ice are due to hydrogen bonding.