Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
The first one. The E and B chatacteristic are perpendicular to eachother. The direction of the wave can be found by the right hand rule.
I would tell him, in the kindest, most gentle way I could manage,
to fahgeddaboudit.
The total amount of energy doesn't change. Energy is never created,
and it never disappears. If you have some energy, then it had to come
from somewhere, and if you used some energy, then it had to go
somewhere.
You can never get more energy out of the electromotor than you put into it,
and in the real world, you can't even get THAT much out, because some
of it is always used on the way through.
Pour yourself a cold glass of soda, then look up "Perpetual Motion" or
"Free Energy" on the internet, relax, and enjoy the show. They are all
fakes. They may not all be intentionally meant to fool you, but they are
all impossible.
We did this experiment before, when the rope moves, it represents the waves passing through in from the level of intensity. I hope this is a good answer.
The answer is the electron microscope. It is a kind of
microscope that uses electrons to light a sample and make an enlarged
image. These kinds of microscopes have much better determining
power than light microscopes and can get much higher magnifications.