Barium-131's radiation level won't reach 1/4 of its initial level for 24 hours.
ln[A] t = -kt + ln[A] 0 is the integrated rate rule for the first-order reaction A's products.
A straight line is produced when the natural log of [A] is plotted as a function of time since this equation has the form y = mx + b.
How is the length of a half-life determined?
The amount of time needed for the reactant concentration to drop to half its initial value is known as the half-life of a reaction. A first-order reaction's half-life is a constant that is correlated with its rate constant:
t 1/2 = 0.693/k.
To know more about rate constant, visit:
brainly.com/question/20305871
#SPJ4
Answer:
See explanation
Explanation:
Crystals can be made from methanol by recrystallizing the plant extract from methanol.
The methanol/water system is heated rapidly using a hot plate and the plant extract dissolves in the heating solution until a clear solution is obtained.
The solution is now cooled rapidly. The interior of the flask used for the re crystallization may even by scratched to assist the quick formation of crystals. Large crystals of plant compounds may be obtained using this method. This process should be carried out in a fume hood because of the toxicity of methanol.
The hydrocarbon is used in excess.
<h3><u>Explanation</u>:</h3>
The bromination of an arene is not simple as bromination of an alkane. This is because the carbocation or free radicle formation in benzene is a very energy consuming process. This is why a lewis base like aluminium bromide or ferric bromide is used. The ferric bromide takes in the bromine radicle and forms the brominium cation which helps in the formation of electrophile. Now this electrophile brominium cation attacks the benzene ring and forms a temporary sp3 hybrid carbon intermediate. Then the hydrogen is taken by the FeBr4- forming HBr and regenerating the FeBr3 as well as Aromaticity of the arene species at the same time. Here hydrocarbon is used in excess just to prevent the chances of multiple substitution in the same arene molecule.
Answer:
12 grams of hydrogen gas
and 56 grams of nitrogen gas
The molar mass of ammonia is 17 g/mol.
68 grams of ammonia corresponds to
17g/mol
68g
=4moles
4 moles of ammonia will be obtained from
2
4×1
=2 moles of nitrogen and
2
4×3
=6 moles of hydrogen.
The molar masses of nitrogen and hydrogen are 28 g/mol and 2 g/mol respectively.
2 moles of nitrogen corresponds to 2×28=56 grams.
6 moles of hydrogen corresponds to 6×2=12 grams.