Answer:
(Interest rate/number of payments)*$170000= interest for the first month.
Interest amounts for all the months of repayment plus $170000=Total loan cost
Explanation:
Interest is the amount you pay for taking a loan from a bank on top of the original amount borrowed.
Factors affecting how much interest is paid are; the principal amount, the loan terms, repayment schedule, the repayment amount and the rate of interest.
The interest paid=(rate of interest/number of payments to make)*principal amount borrowed.
You divide the interest with number of payments done in a year where monthly are divided by 12.Multiplying it by loan balance in the first month which is your principal amount gives the interest rate to pay for that month.
You new loan balance will be= Principal -(repayment-interest)
Do this for the period the loan should take.
Add all the interest amount to original borrowed amount to get total cost of the loan after the period of time.
Answer:
Airplanes' wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. As a result, less air pressure is on top of the wing. This lower pressure makes the wing, and the airplane it's attached to, move up.
Explanation:
Unless cylinders are firmly secured on a special carrier intended for this purpose, regulators shall be removed and valve protection caps put in place before cylinders are moved. A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders from being knocked over while in use.
Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes
Answer:
Explanation:
Thermostatic expansion valve is mainly a throttling device commonly used in air conditioning systems and refrigerators.
It is an automatic valve that maintains proper flow of refrigerant in the evaporator according to the load inside the evaporator. When the load in the evaporator is higher the valve opens and allows the increase in flow of refrigerant and when the load reduces the valve closes a bit and reduces the flow of refrigerant. This process leads to higher efficiency of compressor as well as the whole refrigeration system. Thus TEV works to reduce the pressure of refrigerant from higher condenser pressure to the lower evaporator pressure. It also keeps the evaporator active.