The force of gravity form the Sun will be stronger on a n object with more mass
Answer:
<em>The velocity after the collision is 2.82 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
Or, equivalently:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.
After the collision, both cars stick together. Let's compute the common speed after that:



The velocity after the collision is 2.82 m/s
Explanation:
so sorry
don't know but please mark me as brainliest please
Answer:
They will move the fridge if they all push in the same direction, but it will not move with constant velocity
Explanation:
The maximum static friction force is
(negative sign since its direction is opposite to the push applied by the people)
Sam can apply a force of 130 N, while Amir and Andre can apply a push of 65 N each, so the total force that they can apply, if they push in the same direction, will be:

This force is larger than the frictional force, so the fridge will start moving.
However, the net force on the fridge will be:

And according to Newton's second law,

where m is the mass of the fridge and a its acceleration, since the net force is not zero, then the fridge will have a non-zero acceleration, so it will not move with constant velocity.