There are 3 bases before you reach home plate.
Answer:
23.0 s
Explanation:
Given:
v₀ = 0 m/s
v = 19.8 m/s
a = 4.80 m/s²
Find: Δx and t
v² = v₀² + 2aΔx
(19.8 m/s)² = (0 m/s)² + 2 (4.80 m/s²) Δx
Δx = 40.84 m
v = at + v₀
19.8 m/s = (4.80 m/s²) t + 0 m/s
t = 4.125 s
The elevator takes 40.84 m and 4.125 s to accelerate, and therefore also 40.84 m and 4.125 s to decelerate.
That leaves 291.3 m to travel at top speed. The time it takes is:
291.3 m / (19.8 m/s) = 14.71 s
The total time is 4.125 s + 14.71 s + 4.125 s = 23.0 s.
Answer:
Explanation:
In this case we shall calculate rate of change of flux in the coli to calculate induced emf .
Flux through the coil = no of turns x area x magnetic field perpendicular to it
=34 x 2.25 x (3.95 )²x 10⁻⁴ Weber
= 1193.4 x 10⁻⁴Weber
Final flux through the coil after turn by 90°
= 1193.4 x 10⁻⁴ cos 90 ° =0
Change of flux
= 1193.4 x 10⁻⁴ weber.
Time taken = 0.335 s .
Average emf= Rate of change of flux
= change in flux / time
=1193.4 x 10⁻⁴ / .335
= 3562.4 x 10⁻⁴
356.24 x 10⁻³
=356.24 mV.
Current induced = emf induced / resistance
= 356.24/.780
= 456.71 mA.
Answer:
g = 0.4 m/s²
Explanation:
Given the following data;
Height = 5 meters
Time = 5 seconds
To find the acceleration due to gravity (g) on the planet;
Mathematically, the maximum height of an object is given by the formula;
H = ½gt²
Where;
H is the height measured in meters.
g is the acceleration due to gravity.
t is time measured in seconds.
Substituting into the formula, we have;
5 = ½ * g * 5²
5 = 0.5 * g * 25
5 = 12.5 * g
g = 5/12.5
g = 0.4 m/s²
Answer:
0.15A
Explanation:
The parameters given are;
R=20.0 Ω
C= 2.50 μF
V= 3.00 V
f= 2.48×10^-3 Hz
Xc= 1/2πFc
Xc= 1/2×3.142 × 2.48×10^-3 × 2.5 ×10^-6
Xc= 25666824.1
Z= 1/√(1/R)^2 +(1/Xc)^2
Z= 1/√[(1/20)^2 +(1/25666824.1)^2]
Z= 1/√(2.5×10^-3) + (1.5×10^-15)
Z= 20 Ω
But
V=IZ
Where;
V= voltage
I= current
Z= impedance
I= V/Z
I= 3.00/20
I= 0.15A