Answer:
Answer in the attached file
The world's lightest material is carbon aerogel which has a mass of only 0.16 milligram and it is even lighter than aerographite.
Answer:
The mass defect of a deuterium nucleus is 0.001848 amu.
Explanation:
The deuterium is:
The mass defect can be calculated by using the following equation:
![\Delta m = [Zm_{p} + (A - Z)m_{n}] - m_{a}](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5BZm_%7Bp%7D%20%2B%20%28A%20-%20Z%29m_%7Bn%7D%5D%20-%20m_%7Ba%7D)
Where:
Z: is the number of protons = 1
A: is the mass number = 2
: is the proton's mass = 1.00728 amu
: is the neutron's mass = 1.00867 amu
: is the mass of deuterium = 2.01410178 amu
Then, the mass defect is:
![\Delta m = [1.00728 amu + (2- 1)1.00867 amu] - 2.01410178 amu = 0.001848 amu](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5B1.00728%20amu%20%2B%20%282-%201%291.00867%20amu%5D%20-%202.01410178%20amu%20%3D%200.001848%20amu)
Therefore, the mass defect of a deuterium nucleus is 0.001848 amu.
I hope it helps you!
Use the Ideal Gas Law to find the moles of gas first.
Be sure to convert T from Celsius to Kelvin by adding 273.
Also I prefer to deal with pressure in atm rather than mmHg, so divide the pressure by 760 to get it in atm.
PV = nRT —> n = PV/RT
P = 547 mmHg = 547/760 atm = 0.720 atm
V = 1.90 L
T = 33°C = 33 + 273 K = 306 K
R = 0.08206 L atm / mol K
n = (0.720 atm)(1.90 L) / (0.08206 L atm / mol K)(306 K) = 0.0545 mol of gas
Now divide grams by mol to get the molecular weight.
3.42 g / 0.0545 mol = 62.8 g/mol