Answer:
<em>Elevator That Is Moving Downwards At A Constant Speed Of 4.9 M/S. What Is The Magnitude Of The Net Force Acing On The Student?</em>
<em>This problem has been solved!</em>
<em>This problem has been solved!See the answer</em>
<em>This problem has been solved!See the answerA student weighs 1200N. They are standing in an elevator that is moving downwards at a constant speed of </em><em>4.9 m/s. What is the magnitude of the net force acing on the student?</em>
Well, in order to figure out the answer is to divide until you figure out how many miles they went per second. If it takes 5 seconds to reach 50 miles per hour it took 10 seconds per every 10 miles meaning each mile took 1 second. (Not actually possible but the answer) So, If it finished a 100 mile trip in 2 hours it took an hour for 50 miles. If it took 1 hour for 50 miles divide 60/50 which gets you 1.2 so it took 1.2 miles per minute meaning the car went 120 miles per hour I believe. I hope this helps :)
Answer:
68.8 Hz
137.6 Hz, 206.4 Hz
Explanation:
L = Length of tube = 2.5 m
v = Velocity of sound in air = 344 m/s
Distance between nodes is given by

Where n = 0, 1, 2, 3, ...
Making n+1 = n

where n = 1, 2, 3 .....
For fundamental frequency n = 1

Frequency is given by

The fundamental frequency is 68.8 Hz
First overtone

Second overtone

The overtones are 137.6 Hz, 206.4 Hz
Answer:
As b ∝ (L/r²) and
the distance of the sun from the earth is 0.00001581 light years
and
the distance of the Sirius from the earth is 8.6 light years
hence,
the Sun appear brighter in the sky
Explanation:
The brightness (b) is directly proportional to the Luminosity of the star (L) and inversely proportional to the square of the distance between the star and the observer (r).
thus, mathematically,
b ∝ (L/r²)
now,
given
L for sirius is 23 times more than the sun i.e 23L
now,
the distance of the sun from the earth is 0.00001581 light years
and
the distance of the Sirius from the earth is 8.6 light years
thus,
using the the relation between conclude that the value of brightness for the Sirius comes very very low as compared to the value for brightness for the Sun.
hence, the sun appears brighter
Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision