The intensity of the microwave is 10.09 × 10⁵ W/m².
The unit of magnetic induction is the tesla (T). The magnetizing force, which induces the lines of force through a material, is called the field intensity, H (or H-field), and by convention has the units ampere per meter (A m−1) .
The portion of a material's magnetic field that results from an external current and is not intrinsic to the material itself is known as the magnetic field strength, also known as magnetic intensity or magnetic field intensity. It is measured in amperes per meter and represented as the vector H.
Magnetic Field, B = 9.2 × 10⁻⁵ T

× 
Therefore, the intensity of the microwave is 10.09 × 10⁵ W/m².
Learn more about intensity here:
brainly.com/question/24319848
#SPJ4
That's true, you can't get any more precise than what's measured to the least precision.
The second one is the answer
Answer:
mass x gravity x height
Explanation:
Gravitational potential energy is measured in jules
Answer:
Option B and Option D are true
Explanation:
We are given;
Number of atoms in block A = 800
Energy content in block A = 20 quanta
Number of atoms in block B = 200
Energy content in block B = 80 quanta
The energy of a system which is an extensive quantity,depends on the mass or number of moles of the system. However, at equilibrium, the energy density of the two copper blocks will be equal. That is, each atom of Cu in the two blocks will, on average, have the same energy. Because block A has 4 times more atoms than block B, it will have 4 times more quanta of energy. Thus, option B is therefore true while option A is false.
Temperature is a measure of the average kinetic energy of the atoms in a material. Now, if each atom in blocks A and B have the same average energy, then the temperatures of blocks A and B will be equal at equilibrium. Thus, option D is true.
Entropy of a system is an extensive quantity that depends on the the mass or number of atoms in the system. Because block A is bigger than block B, it will have higher entropy. However, that the specific entropy (the entropy per mole or per unit mass) is an intensive quantity -- it is independent of the size of a system. The molar entropy of blocks A and B are equal at equilibrium. Thus option C is false.