I thinks it’s A, tell me if you get it right
Answer:
1st statement is true
Explanation:
Here statement 1 is correct
Let think about it, if you push down the bar then you are lifting your weight off the pedals.
Obviously, this question does not take into account of racing bikes with straps on pedals, where you would push on one side and pull on the other to match your legs are doing, with straps your other leg can pull pedals upward.
An ellipse has two focal points. One of the focal points is the <u><em>Sun</em></u>.
Because they planets move faster when they are around the sun.
Answer:
x₁ = 0.62 m
Explanation:
In this exercise the force is electric, given by Coulomb's law
F =
This force is a vector, since the three charges are in a line we can reduce the vector sum to a scalar sum.
For the sense of force let us use that charges of the same sign repel and charges of the opposite sign attract.
∑ F = F₁₂ - F₂₃
They ask us to find the point where the summaries of the force is zero.
F₁₂ - F₂₃ = 0
F₁₂ = F₂₃
let's fix a reference system located in the first charge (more to the left), the distance between the two charges is d = 1.5 m and x is the distance to the location of the second sphere
k q₁q₂ / x² = k q₂q₃ / (d-x) ²
q₁ (d-x) ² = q₃ x²
let's solve
d² - 2 x d + x² =
x²
x² (1 -
) - 2x d + d² = 0
we substitute the values
x² (1- 4/2) - 2 1.5 x + 1.5² = 0
x² (-1) - 3.0 x + 2.25 = 0
x² + 3 x - 2.25 = 0
let's solve the quadratic equation
x = [-3 ±
] / 2
x = [-3 ± 4.24] / 2
x₁ = 0.62 m
x₂ = 3.62 m
since it indicates that the charge q₂ e places between the spheres, the correct solution is
x₁ = 0.62 m
When discussing discordant and harmonious sound waves, the
statement that is false is knowing the frequencies of the original waves is
useful in determining if the result will be discordant or harmonious. The
answer is letter B.