Answer:Well There is many ways to increase friction between objects. One being rubbing the two objects together quicker and harder. If there is any sort of wetness or anything related to that make sure to dry the surface between the two objects you want to create friction between so it will be more effective.
Explanation:
The volume of the 0.15 M LiOH solution required to react with 50 mL of 0.4 M HCOOH to the equivalence point is 133.3 mL
<h3>Balanced equation </h3>
HCOOH + LiOH —> HCOOLi + H₂O
From the balanced equation above,
The mole ratio of the acid, HCOOH (nA) = 1
The mole ratio of the base, LiOH (nB) = 1
<h3>How to determine the volume of LiOH </h3>
- Molarity of acid, HCOOH (Ma) = 0.4 M
- Volume of acid, HCOOH (Va) = 50 mL
- Molarity of base, LiOH (Mb) = 0.15 M
- Volume of base, LiOH (Vb) =?
MaVa / MbVb = nA / nB
(0.4 × 50) / (0.15 × Vb) = 1
20 / (0.15 × Vb) = 1
Cross multiply
0.15 × Vb = 20
Divide both side by 0.15
Vb = 20 / 0.15
Vb = 133.3 mL
Thus, the volume of the LiOH solution needed is 133.3 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
for the given reaction is -99.4 J/K
Explanation:
Balanced reaction: ![\frac{1}{2}N_{2}(g)+\frac{3}{2}H_{2}(g)\rightarrow NH_{3}(g)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7DN_%7B2%7D%28g%29%2B%5Cfrac%7B3%7D%7B2%7DH_%7B2%7D%28g%29%5Crightarrow%20NH_%7B3%7D%28g%29)
![\Delta S^{0}=[1mol\times S^{0}(NH_{3})_{g}]-[\frac{1}{2}mol\times S^{0}(N_{2})_{g}]-[\frac{3}{2}mol\times S^{0}(H_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20S%5E%7B0%7D%28NH_%7B3%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28N_%7B2%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28H_%7B2%7D%29_%7Bg%7D%5D)
where
represents standard entropy.
Plug in all the standard entropy values from available literature in the above equation:
![\Delta S^{0}=[1mol\times 192.45\frac{J}{mol.K}]-[\frac{1}{2}mol\times 191.61\frac{J}{mol.K}]-[\frac{3}{2}mol\times 130.684\frac{J}{mol.K}]=-99.4J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20192.45%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20191.61%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20130.684%5Cfrac%7BJ%7D%7Bmol.K%7D%5D%3D-99.4J%2FK)
So,
for the given reaction is -99.4 J/K
The periodic table of the elements are describe the electronic configuration of the elements on which the properties of the elements depends. Among the given groups only metal, non-metal and semi-metal group are the part of periodic table. The metallic property depends upon the binding energy of the electrons with the nucleus. Thus the elements which have the valence electrons more near to the nucleus that is s-block elements are more metallic in nature. On the other hand the elements which have the valence electrons far from the nucleus are more non-metallic in nature like p-block elements. However the binding energy or the attraction of the outermost electrons to the nucleus depends not only its valence electrons position but also some other factors like shielding effect, effective nuclear charge etc.
The elements which are in between the metals and non-metals can be classified as semi-metals.
Although the conductivity of a material is an inherent property of the metals but sometime the nonmetals or semi-metals are also behave like a conductor due to presence of the other elements, thus it cannot be a p[property of the periodic table. Similarly acidity, flammable gases are not part of the periodic table.
The variables in the ideal gas constant has V as the unit of liters and T has the unit of Kelvin. Thus, option C is correct.
The gas constant in an ideal gas equation has been the value of the energy absorbed by 1 mole of an ideal gas at standard temperature and pressure.
The value of R has been dependent on the units of volume, temperature and pressure of the ideal gas.
The given value of R has been 0.0821 L.atm/mol.K
The unit in gas constant has been L (Liter) for volume (V).
The unit of pressure (P) has been atm.
The unit of temperature (T) has been Kelvin (K).
Thus the gas law constant used by student has V has the unit of liters and T has the unit of Kelvin. Thus, option C is correct.
For more information about the gas constant, refer to the link:
brainly.com/question/24814070