Heat= latent heat of fusion+sensible heat+ latent heat of vapourization
=(79.7*5)+(5*100*1)+(540*5)
=3598.5 cal
Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
The correct answer is B) Chlorine, Sulfur, and Silicon
I'm 100% sure this is correct
Brainliest please!!!
Answer: The answer is A
Explanation: No because it’s is a mixture because physical methods were used to separate its particals
<u>Answer:</u> The cell potential of the cell is +0.118 V
<u>Explanation:</u>
The half reactions for the cell is:
<u>Oxidation half reaction (anode):</u> 
<u>Reduction half reaction (cathode):</u> 
In this case, the cathode and anode both are same. So,
will be equal to zero.
To calculate cell potential of the cell, we use the equation given by Nernst, which is:
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Ni^{2+}_{diluted}]}{[Ni^{2+}_{concentrated}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BNi%5E%7B2%2B%7D_%7Bdiluted%7D%5D%7D%7B%5BNi%5E%7B2%2B%7D_%7Bconcentrated%7D%5D%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
= 
= 1.0 M
Putting values in above equation, we get:


Hence, the cell potential of the cell is +0.118 V