4.90× 10^2 L
I am guessing that the mass of the air is 6.32 × 10^2 <em>g</em>. Then,
Volume = 6.32 × 10^2 g × (1 L/1.29 g) = 4.90× 10^2 L
Answer:
Water is a unique molecule and thus consists of unique properties. It is considered polar because of its charges and its bent shape. The two oxygen are negative and the hydrogen is positive. This creates two poles, making the molecule polar. This is an example of polar covalent chemical bonding.
Answer : The mass of solute in solution is
.
Solution : Given,
Molarity = 0.730 M
Volume of solution = 1.421 L
Molar mass of sodium carbonate = 105.98 g/mole
Formula used for Molarity :

where,
w = mass of solute
M = Molar mass of solute
V = volume of solution in liter
Sodium carbonate is solute and water is solvent.
Now put the given values in above formula, we get the mass of solute in solution.

By rearranging the terms, we get

Therefore, the mass of solute in solution is
.
Whenever the fuel is being used up, a star explodes and the energy leakage from a star's core ceases.
Explanation:
The dying star expands in the "Red Giant," before even the inevitable collapse starts, due to nuclear reactions just outside of the core.
It becomes a white dwarf star when the star has almost the same density as the Sun. If it's much larger, a supernova explosion could take place and leave a neutron star away. However, if it is very large–at least three times the Sun's mass–the crumbling core of the star, nothing will ever stop it from crumbling. The star is imploding into a black hole, an endless gravitational loop in space.