The answer is statement #3.
Answer:
d = 0.793 g/L
Explanation:
Given data:
Density of fluorine gas = ?
Pressure of gas = 0.554 atm
Temperature of gas = 50 °C (50+273.15K = 323.15 K)
Solution:
Formula:
PM = dRT
M = molar mass of gas
P = pressure
R = general gas constant
T = temperature
d = PM/RT
d = 0.554 atm × 37.99 g/mol / 0.0821 atm.L /mol.K × 323.15 K
d = 21.05 atm.g/mol/26.53 atm.L /mol
d = 0.793 g/L
The energy at n level of hydrogen atom energy level =13.6/n^2
substiture the respective n values in the equation above and find the difference in the energy levels
instagram : imrajsingh
gimme a follow^ :)
<span>Answer:
2 C8H18 + 25 O2 => 16 CO2 + 18 H2O
1.0 kg = 1000 g C8H18 = 1000 g / 114.2293 g/mole = 8.75 moles C8H18
8.75 moles C8H18 produce (16/2) (8.75) = 70 moles CO2
70 moles CO2 = (70 moles) (44.0096 g/mole) = 3081 g CO2 = 3.1 kg CO2</span>
Answer:
4.867 L of ammonia
Explanation:
Using Haber's process to form ammonia using Nitrogen and hydrogen, the equation is :
N₂ + 3H₂ → 2NH₃
Here, 3 moles of hydrogen gas gives 2 moles of ammonia.
1 mole of any substance occupies 22.4L at STP
So, 3 x 22.4L of hydrogen gives 2 x 22.4 L of ammonia
Then 7.3 L of hydrogen will give:
=
=
= 4.867 L of ammonia