Answer:
It is a instrument used to measure the distance traveled by a vehicle.
Explanation:
This is what it looks like ↓
Answer: 7.38 km
Explanation: The attachment shows the illustration diagram for the question.
The range of the bomb's motion as obtained from the equations of motion,
H = u(y) t + 0.5g(t^2)
U(y) = initial vertical component of velocity = 0 m/s
That means t = √(2H/g)
The horizontal distance covered, R,
R = u(x) t = u(x) √(2H/g)
Where u(x) = the initial horizontal component of the bomb's velocity = 287 m/s, H = vertical height at which the bomb was thrown = 3.24 km = 3240 m, g = acceleration due to gravity = 9.8 m/s2
R = 287 √(2×3240/9.8) = 7380 m = 7.38 km
Answer:
0
Explanation:
the momentum will always be 0 when it is at rest because the object isnt moving!
Hope this helped!
Answer:
we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances
Explanation:
given data
base = 3.60 m
speed u = 8 m/s
height = 1.70 m
to find out
check change in speed
solution
we know here formula for v that is
v² = u² - 2gh ............1 for upward speed
v² = u² + 2gh ............2 for projected speed
so here put all value and find v with h = 3.60 - 1.70 = 1.9 m
v² = 8² - 2(9.8) 1.9 = 26.76
v² = 8² + 2(9.8) 1.9 = 101.24
v = 5.173 m/s ..............3
v = 10.061 m/s ...................4
so change in speed form 3 and 4 equation
change in speed = v - u = 8 - 5.173 = 2.827 m/s .................5
change in speed = v - u = 10.061 - 8 = 2.061 m/s ..................6
so now we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances
Answer:
measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen,
Explanation:
The expression for the diffraction phenomenon is
a sin θ = m λ
for the case of destructive interference. In general the detection screen is quite far from the grid, let's use trigonometry to find the angles
tan θ = y / L
in these experiments the angles are small
tan θ = sin θ / cos θ = sin θ
sunt θ = y / L
we substitute
a
= m λ
y = m L λ / a
therefore, by carefully measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen, so you can know where the displacement occurs, it should be clarified that these displacements are very small so the measurement system must be capable To measure quantities on the order of hundredths of a millimeter, a micrometer screw could be used.